Lý thuyết số phức

Bình chọn:
3.5 trên 4 phiếu

Số phức z = a + bi có phần thực là a, phần ảo là b

- Số phức \(z = a + bi\) có phần thực là \(a\), phần ảo là \(b\) (\(a, b \in \mathbb R\) và \(i^2 =-1\))

- Số phức bằng nhau \(a + bi = c + di ⇔ a = c\) và \(b = d\)

- Số phức \(z = a + bi\) được biểu diễn bởi điểm \(M(a;b)\) trên mặt phẳng toạ độ.

- Độ dài của \(\overrightarrow {OM} \) là môđun của số phức z, kí hiệu là \(|z| = \overrightarrow {OM}  = \sqrt {{a^2} + {b^2}} \)

- Số phức liên hợp của \(z = a + bi\) và \( \overline z= a - bi\).

Chú ý

- Mỗi số thực là số phức có phần ảo bằng \(0\). Ta có \(\mathbb R  ⊂ \mathbb C\).

- Số phức \(bi\) (\(b \in \mathbb R\)) là số thuần ảo (phần thực bằng \(0\))

- Số \(i\) được gọi là đơn vị ảo.

- Số phức viết dưới dạng \(z = a + bi\) (\(a, b \in R\)), gọi là dạng đại số của số phức.

- Ta có: \(|\overline z|= |z|\)

            \( z = \overline z ⇔ z\) là số thực

            \(z = -\overline z ⇔ z\) là số ảo.

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan