Bài 5 trang 134 SGK Giải tích 12


Giải bài 5 trang 134 SGK Giải tích 12. Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thoả mãn điều kiện:

LG a

a) \(|z| = 1\);                

Phương pháp giải:

+) Giả sử \(z = x + yi, (x,y \in \mathbb R)\), khi đó trên mặt phẳng toạ độ \(Oxy\), điểm \(M(x;y)\) biểu diễn số phức \(z\).

+) \(\left| z \right| = \sqrt {{x^2} + {y^2}} .\)

+) Phương trình đường thẳng có dạng: \(ax + by + c = 0.\)

+) Phương trình đường tròn có dạng: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}.\)

Lời giải chi tiết:

Ta có \(|z| = 1 \) \(⇔ \sqrt {{x^2} + {y^2}} = 1 ⇔ {x^2} + {y^2} = 1\).

Vậy tập hợp điểm biểu diễn số phức \(z\) là đường tròn tâm \(O\), bán kính bằng \(1.\)

LG b

b) \(|z| ≤ 1\);

Lời giải chi tiết:

Ta có \(|z| ≤ 1 \) \(⇔ \sqrt {{x^2} + {y^2}} ≤ 1 ⇔ {x^2} + {y^2}≤ 1\).

Vậy tập hợp điểm biểu diễn số phức \(z\) là hình tròn tâm \(O\), bán kính bằng \(1\) (kể cả các điểm trên đường tròn).

LG c

c) \(1 < |z| ≤ 2\);       

Lời giải chi tiết:

Ta có \(1 < |z| ≤ 2 \) \(⇔ 1 < \sqrt {{x^2} + {y^2}} ≤ 2 \) \(⇔ 1 < {x^2} + {y^2}≤ 4\).

Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm \(O\), bán kính bằng \(1\) (không kể điểm trên đường tròn này) và đường tròn tâm \(O\), bán kính bằng \(2\) (kể cả các điểm trên đường tròn này).

LG d

d) \(|z| = 1\) và phần ảo của \(z\) bằng \(1\).

Lời giải chi tiết:

Ta có \(|z| = 1 \) \(⇔  \sqrt {{x^2} + {y^2}}  = 1 \) \(⇔ {x^2} + {y^2}= 1\) và phần ảo của \(z\) bằng \(1\) tức \(y = 1\). Suy ra \(x = 0\) và \(y = 1.\)

Vậy tập hợp các điểm cần tìm là điểm \(A(0;1)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.6 trên 18 phiếu

Các bài liên quan: - Bài 1. Số phức

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài