Cho biết \({99^2} = {a^2} - 2ab + {b^2}\) với \(a,\,b \in \mathbb{R}\) . Khi đó
\(a = - 98,\,b = 1\) .
Viết \({101^2} - {99^2}\) dưới dạng tích hoặc bình phương của một tổng (hiệu).
Cho \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}}; N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}}\) . Tìm mối quan hệ giữa \(M, N\) ?
Cho biểu thức \(T = {x^2} + 20x + 101\) . Khi đó
Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là
Giá trị lớn nhất của biểu thức \(\;Q = 8-8x-{x^2}\) là
Cho biểu thức \(M = {79^2} + {77^2} + {75^2} + ... + {3^2} + {1^2}\) và \(N = {78^2} + {76^2} + {74^2} + ... + {4^2} + {2^2}\) . Tính giá trị của biểu thức \(\frac{{M - N}}{2}\) .
Cho đẳng thức \({\left( {a + b + c} \right)^2} = 3\left( {ab + bc + ca} \right)\) . Khi đó
Giá trị nhỏ nhất của biểu thức \(T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\) là
Kết quả của phép tính \({72^2} + {22^2} - 44.72\) là:
784.
250.
2500.
8836.