CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
CHƯƠNG 4. ĐỊNH LÍ THALES
CHƯƠNG 5. DỮ LIỆU VÀ BIỂU ĐỒ
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
Bài 25. Phương trình bậc nhất một ẩn
Bài 26. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 37
Bài 27. Khái niệm hàm số và đồ thị của hàm số
Bài 28. Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Bài 29. Hệ số góc của đường thẳng
Luyện tập chung trang 55
Bài tập cuối chương 7
CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG
Bài 33. Hai tam giác đồng dạng
Bài 34. Ba trường hợp đồng dạng của hai tam giác
Luyện tập chung trang 91
Bài 35. Định lí Pythagore và ứng dụng
Bài 36. Các trường hợp đồng dạng của hai tam giác vuông
Bài 37. Hình đồng dạng
Luyện tập chung trang 108
Bài tập cuối chương 9
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Tính giá trị của hàm số Toán 9 có đáp án

Trắc nghiệm Tính giá trị của hàm số

14 câu hỏi
30 phút
Trắc nghiệm
Câu 1 :

Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

Đáp án đúng điền vào “…”.

  • A.
    \( > \)
  • B.
    \( < \)
  • C.
    \( = \)
  • D.
    \( \ne \)
Câu 2 :

Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37oC không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:

  • A.
    \(N\left( t \right) = 37\)
  • B.
    \(N\left( t \right) > 37\)
  • C.
    \(N\left( t \right) < 37\)
  • D.
    \(N\left( t \right) \ge 37\)
Câu 3 :

Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( 1 \right) > f\left( 2 \right)\)
  • B.
    \(f\left( 1 \right) = f\left( 2 \right)\)
  • C.
    \(f\left( 1 \right) < f\left( 2 \right)\)
  • D.
    \(f\left( 1 \right) \le f\left( 2 \right)\)
Câu 4 :

Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:

  • A.
    60m
  • B.
    70m
  • C.
    80m
  • D.
    90m
Câu 5 :

Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)  

  • A.
    \(f\left( x \right) < f\left( { - x} \right)\)
  • B.
    \(f\left( x \right) = f\left( { - x} \right)\)
  • C.
    \(f\left( x \right) > f\left( { - x} \right)\)
  • D.
    Không so sánh được f(x) và f(-x)
Câu 6 :

Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:

  • A.
    \(x =  - 4\)
  • B.
    \(x = 4\)
  • C.
    \(x =  - 3\)
  • D.
    \(x = 3\)
Câu 7 :

Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì  

  • A.
    \(x > 0\)
  • B.
    \(x < 0\)
  • C.
    \(x = 0\)
  • D.
    Không xác định được
Câu 8 :

Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.

  • A.
    \(f\left( { - 1} \right) + f\left( 2 \right) =  - 6\)
  • B.
    \(f\left( { - 1} \right) + f\left( 2 \right) = 6\)
  • C.
    \(f\left( { - 1} \right) + f\left( 2 \right) = 1\)
  • D.
    \(f\left( { - 1} \right) + f\left( 2 \right) =  - 4\)
Câu 9 :

Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?

  • A.
    \(f\left( 1 \right) + \frac{1}{2} =  - 1\)
  • B.
    \(f\left( 1 \right) + \frac{1}{2} = 0\)
  • C.
    \(f\left( 1 \right) + \frac{1}{2} = 2\)
  • D.
    \(f\left( 1 \right) + \frac{1}{2} = 1\)
Câu 10 :

Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)

Khẳng định nào sau đây đúng?  

  • A.
    \(f\left( { - x} \right) = f\left( x \right)\)
  • B.
    \(f\left( { - x} \right) =  - f\left( x \right)\)
  • C.
    \(f\left( { - x} \right) = 2f\left( x \right)\)
  • D.
    \(f\left( { - x} \right) =  - 2f\left( x \right)\)
Câu 11 :

Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:

  • A.
    \(a = 1\)
  • B.
    \(a = 2\)
  • C.
    \(a =  - 1\)
  • D.
    \(a =  - 2\)
Câu 12 :

Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?

  • A.
    0 giá trị
  • B.
    1 giá trị
  • C.
    2 giá trị
  • D.
    Vô số giá trị
Câu 13 :

Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:

d(cm) 19   23
Cỡ giầy   33 36

Hãy chọn bảng đúng trong các bảng dưới đây:

  • A.
    d(cm) 19 21 23
    Cỡ giầy 32 33 36

     

  • B.
    d(cm) 19 22 23
    Cỡ giầy 29 33 36
  • C.
    d(cm) 19 20 23
    Cỡ giầy 31 33 36

     

  • D.
    d(cm) 19 21 23
    Cỡ giầy 30 33 36
Câu 14 :

Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:

Tính \(f\left( {12} \right)\)

  • A.
    \(f\left( {12} \right) = 32\)
  • B.
    \(f\left( {12} \right) = 33\)
  • C.
    \(f\left( {12} \right) = 34\)
  • D.
    \(f\left( {12} \right) = 37\)