CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
CHƯƠNG 4. ĐỊNH LÍ THALES
CHƯƠNG 5. DỮ LIỆU VÀ BIỂU ĐỒ
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
Bài 25. Phương trình bậc nhất một ẩn
Bài 26. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 37
Bài 27. Khái niệm hàm số và đồ thị của hàm số
Bài 28. Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Bài 29. Hệ số góc của đường thẳng
Luyện tập chung trang 55
Bài tập cuối chương 7
CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG
Bài 33. Hai tam giác đồng dạng
Bài 34. Ba trường hợp đồng dạng của hai tam giác
Luyện tập chung trang 91
Bài 35. Định lí Pythagore và ứng dụng
Bài 36. Các trường hợp đồng dạng của hai tam giác vuông
Bài 37. Hình đồng dạng
Luyện tập chung trang 108
Bài tập cuối chương 9
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Cách giải phương trình đưa về dạng ax + b = 0 Toán 9 có đáp án

Trắc nghiệm Cách giải phương trình đưa về dạng ax + b = 0

17 câu hỏi
30 phút
Trắc nghiệm
Câu 1 :

Nghiệm của phương trình \(3x - 6 = 0\) là:

  • A.
    \(x = \frac{1}{2}\)
  • B.
    \(x = \frac{{ - 1}}{2}\)
  • C.
    \(x = 2\)
  • D.
    \(x =  - 2\)
Câu 2 :

Nghiệm của phương trình \(\frac{3}{4} + \frac{2}{5}x = 0\) có dạng \(x =  - \frac{a}{b},\) trong đó \(b > 0\) và \(\frac{a}{b}\) là phân số tối giản. Khẳng định nào sau đây đúng?  

  • A.
    \(a + b = 21\)
  • B.
    \(a + b = 23\)
  • C.
    \(a + b = 20\)
  • D.
    \(a + b = 24\)
Câu 3 :

Biết rằng \(4x - 8 = 0\). Giá trị của biểu thức \(5{x^2} - 4\) là:  

  • A.
    \( - 24\)
  • B.
    \(24\)
  • C.
    \( - 16\)
  • D.
    16
Câu 4 :

Tìm x, biết rằng nếu lấy x trừ đi \(\frac{1}{4},\) rồi nhân kết quả với \(\frac{1}{2}\) thì được \(\frac{1}{8}\)  

  • A.
    \(x = \frac{1}{2}\)
  • B.
    \(x =  - \frac{1}{2}\)
  • C.
    \(x = \frac{1}{4}\)
  • D.
    \(x = \frac{{ - 1}}{4}\)
Câu 5 :

Gọi \({x_0}\) là nghiệm của phương trình \(3\left( {x - 5} \right) + 9x\left( {x - 3} \right) = 9{x^2}.\)

Hãy chọn đáp án đúng.

  • A.
    \({x_0} < 0\)
  • B.
     \({x_0} <  - 1\)
  • C.
    \({x_0} > 0\)
  • D.
    \({x_0} > 1\)
Câu 6 :

Cho \(A = \frac{{2\left( {x + 1} \right)}}{3} - \frac{1}{2},B = \frac{{1 + 3x}}{4}\). Tìm x để \(A = B\)  

  • A.
    \(x = 1\)
  • B.
    \(x =  - 1\)
  • C.
    \(x =  - 2\)
  • D.
    \(x = 2\)
Câu 7 :

Cho hai phương trình \(8\left( {x - 2} \right) = 14 + 6\left( {x - 1} \right) + 2\left( {x + 5} \right)\,\,\left( 1 \right)\) và \({\left( {x - 2} \right)^2} = {x^2} - 2x - 2\left( {x - 2} \right)\;\;\left( 2 \right)\)

Hãy chọn đáp án đúng.

  • A.
    Phương trình (1) vô nghiệm, phương trình (2) có nghiệm duy nhất
  • B.
    Phương trình (1) có vô số nghiệm, phương trình (2) vô nghiệm
  • C.
    Phương trình (1) vô nghiệm, phương trình (2) có vô số nghiệm
  • D.
    Cả phương trình (1) và phương trình (2) đều có một nghiệm
Câu 8 :

Cho phương trình: \(\frac{{x - 11}}{{2011}} + \frac{{x - 10}}{{2012}} = \frac{{x - 74}}{{1948}} + \frac{{x - 72}}{{1950}}\).

Khẳng định nào sau đây đúng?  

  • A.
    Nghiệm của phương trình là một chia hết cho 5
  • B.
    Nghiệm của phương trình là một số chia hết cho 2
  • C.
    Nghiệm của phương trình là một chia hết cho 4
  • D.
    Nghiệm của phương trình là một số nguyên tố
Câu 9 :

Tìm điều kiện của m để phương trình \(3mx + m - 4x = 3{m^2} + 1\) có nghiệm duy nhất

  • A.
    \(m \ne \frac{4}{3}\)
  • B.
     \(m = \frac{4}{3}\)
  • C.
    \(m = \frac{3}{4}\)
  • D.
    \(m \ne \frac{3}{4}\)
Câu 10 :

Hình tam giác và hình chữ nhật ở hình dưới có cùng chu vi. Khi đó, giá trị của x là:

  • A.
    \(x =  - 2\)
  • B.
    \(x = 2\)
  • C.
    \(x = 1\)
  • D.
    \(x =  - 1\)
Câu 11 :

Cho hai phương trình \(\frac{{7x}}{8} - 5\left( {x - 9} \right) = \frac{1}{6}\left( {20x + 1,5} \right)\left( 1 \right)\) và \(2\left( {a - 1} \right)x - a\left( {x - 1} \right) = 2a + 3\;\left( 2 \right)\)

Để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1) thì giá trị của a là:

  • A.
    \(a = 7\)
  • B.
    \(a =  - 7\)
  • C.
    \(a = \frac{1}{7}\)
  • D.
    \(a = \frac{{ - 1}}{7}\)
Câu 12 :

Phương trình \(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\) có bao nhiêu nghiệm?  

  • A.
    1 nghiệm
  • B.
    2 nghiệm
  • C.
    Không có nghiệm nào
  • D.
    Có vô số nghiệm
Câu 13 :

Cho hình vẽ dưới đây. Biết rằng diện tích của cả hình đó bằng \(168{m^2}.\) Khi đó, giá trị của x (mét) là:  

  • A.
    11m
  • B.
    12m
  • C.
    13m
  • D.
    14m
Câu 14 :

Một xe máy khởi hành từ Hà Nội đi Hải Phòng với vận tốc trung bình 32km/h. Sau đó 1 giờ, một ô tô cũng khởi hành từ Hà Nội đi Hải Phòng, cùng đường với xe máy và với vận tốc trung bình 48km/h. Phương trình biểu thị việc ô tô gặp xe máy sau x giờ, kể từ khi ô tô khởi hành là:

  • A.
    \(48 = 32\left( {x - 1} \right)\)
  • B.
     \(48x = 32\left( {1 - x} \right)\)
  • C.
    \(48x = 32\left( {x - 1} \right)\)
  • D.
    \(48x = 32\left( {x + 1} \right)\)
Câu 15 :

Cho phương trình \(\left( {{m^2} - 3m + 2} \right)x = m - 2,\) với m là tham số. Giá trị của m để phương trình có vô số nghiệm là:  

  • A.
    \(m = 1\)
  • B.
    \(m = 2\)
  • C.
    \(m \in \left\{ {1;2} \right\}\)
  • D.
    \(m = 0\)
Câu 16 :

Phương trình \(x - 8 = x - 5\). Khẳng định nào sau đây đúng?

  • A.

    Phương trình đã cho có vô số nghiệm.

  • B.

    Phương trình đã cho vô nghiệm.

  • C.

    Phương trình đã cho có một nghiệm.

  • D.

    Phương trình đã cho có hai nghiệm.

Câu 17 :

Phương trình \(3x - 10 = 2x - 12\) có bao nhiêu nghiệm?

  • A.

    0

  • B.

    1

  • C.

    2

  • D.

    Vô số nghiệm