CHƯƠNG 1. ĐA THỨC
Bài 1. Đơn thức
Bài 2. Đa thức
Bài 3. Phép cộng và phép trừ đa thức
Luyện tập chung trang 17
Bài 4. Phép nhân đa thức
Bài 5. Phép chia đa thức cho đơn thức
Luyện tập chung trang 25
Bài tập cuối chương 1
CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
Bài 6. Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Bài 7. Lập phương của một tổng. Lập phương của một hiệu
Bài 8. Tổng và hiệu hai lập phương
Luyện tập chung trang 40
Bài 9. Phân tích đa thức thành nhân tử
Luyện tập chung trang 45
Bài tập cuối chương 2
CHƯƠNG 3. TỨ GIÁC
Bài 10. Tứ giác
Bài 11. Hình thang cân
Luyện tập chung trang 56
Bài 12. Hình bình hành
Luyện tập chung trang 62
Bài 13. Hình chữ nhật
Bài 14. Hình thoi và hình vuông
Luyện tập chung trang 73
Bài tập cuối chương 3
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
Bài 21. Phân thức đại số
Bài 22. Tính chất cơ bản của phân thức đại số
Luyện tập chung trang 13
Bài 23. Phép cộng và phép trừ phân thức đại số
Bài 24. Phép nhân và phép chia phân thức đại số
Luyện tập chung trang 23
Bài tập cuối chương 6
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
Bài 25. Phương trình bậc nhất một ẩn
Bài 26. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 37
Bài 27. Khái niệm hàm số và đồ thị của hàm số
Bài 28. Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Bài 29. Hệ số góc của đường thẳng
Luyện tập chung trang 55
Bài tập cuối chương 7
CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG
Bài 33. Hai tam giác đồng dạng
Bài 34. Ba trường hợp đồng dạng của hai tam giác
Luyện tập chung trang 91
Bài 35. Định lí Pythagore và ứng dụng
Bài 36. Các trường hợp đồng dạng của hai tam giác vuông
Bài 37. Hình đồng dạng
Luyện tập chung trang 108
Bài tập cuối chương 9
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Sử dụng tính chất hình bình hành để chứng minh Toán 9 có đáp án

Trắc nghiệm Sử dụng tính chất hình bình hành để chứng minh

17 câu hỏi
30 phút
Trắc nghiệm
Câu 1 :

Hình bình hành ABCD thỏa mãn:

  • A.
    Tất cả các góc đều nhọn
  • B.
    \(\widehat A + \widehat B = {180^o}\)
  • C.
    Góc B và góc C đều nhọn
  • D.
    Góc A vuông còn góc B nhọn
Câu 2 :

Cho hình bình hành ABCD có \(\widehat A = {120^o}\), các góc còn lại của hình bình hành là:

  • A.
    \(\widehat B = {60^o};\widehat C = {120^o};\widehat D = {60^o}\)
  • B.
    \(\widehat B = {110^o};\widehat C = {80^o};\widehat D = {60^o}\)
  • C.
    \(\widehat B = {80^o};\widehat C = {120^o};\widehat D = {80^o}\)
  • D.
    \(\widehat B = {120^o};\widehat C = {60^o};\widehat D = {120^o}\)
Câu 3 :

Cho hình bình hành ABCD. Qua giao điểm O của các đường chéo, vẽ một đường thẳng cắt các cạnh đối BC và AD theo thứ tự E và F (đường thẳng này không đi qua trung điểm của BC và AD). Chọn các khẳng định đúng:

  • A.
    AF = CE
  • B.
    AF = BE
  • C.
    DF = CE
  • D.
    DF = DE.
Câu 4 :

Cho hình bình hành ABCD. Gọi H, K lần lượt là hình chiếu của A, C trên đường thẳng BD. Chọn khẳng định đúng:

  • A.
    AH = HC.
  • B.
    AH // BC
  • C.
    AH = AK.
  • D.
    AHCK là hình bình hành.
Câu 5 :

Chu vi của hình bình hành ABCD bằng 10 cm, chu vi của tam giác ABD bằng

9 cm. Khi đó độ dài BD là:

  • A.
    4 cm
  • B.
    6 cm
  • C.
    2 cm
  • D.
    1 cm
Câu 6 :

Hai góc kề nhau của một hình bình hành không thể có số đo là:

  • A.
    600; 1200
  • B.
    400; 500
  • C.
    1300; 500
  • D.
    750; 1050
Câu 7 :

Tỉ số độ dài hai cạnh của hình bình hành là 3 : 5. Còn chu vi của nó bằng 48cm. Độ dài cạnh kề của hình bình hành là:

  • A.
    12cm và 20cm
  • B.
    6cm và 10cm
  • C.
    3cm và 5cm
  • D.
    9cm và 15cm
Câu 8 :

Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Tính số đo góc BDC, biết \(\widehat {BAC} = {50^o}\).

  • A.
    500
  • B.
    1000
  • C.
    1500
  • D.
    1300
Câu 9 :

Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở E, F. Chọn khẳng định đúng.

  • A.
    DE = FE; FE > FB
  • B.
    DE = FE = FB
  • C.
    DE > FE; EF = FB
  • D.
    DE > FE > FB
Câu 10 :

Hình bình hành ABCD có \(\widehat A - \widehat B = {20^o}\). Số đo góc A bằng:

  • A.
    \({80^o}\)
  • B.
    \({90^o}\)
  • C.
    \({100^o}\)
  • D.
    \({110^o}\)
Câu 11 :

Cho hình bình hành có \(\widehat A = 3\widehat B\). Số đo các góc của hình bình hành là:

  • A.
    \(\widehat A = \widehat C = {90^o};\widehat B = \widehat D = {30^o}\)
  • B.
    \(\widehat A = \widehat D = {135^o};\widehat B = \widehat C = {45^o}\)
  • C.
    \(\widehat A = \widehat D = {90^o};\widehat B = \widehat C = {30^o}\)
  • D.
    \(\widehat A = \widehat C = {135^o};\widehat B = \widehat D = {45^o}\)
Câu 12 :

Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Đường chéo AC cắt BE, DF theo thứ tự ở K, I. Chọn khẳng định đúng nhất.

  • A.
    K, I lần lượt là trọng tâm ΔABD, ΔCBD
  • B.
    AK = KI = IC
  • C.
    Cả A, B đều đúng
  • D.
    Cả A, B đều sai
Câu 13 :

Khẳng định nào sau đây là sai?

  • A.

    Trong hình bình hành, hai đường chéo vuông góc với nhau.

  • B.

    Trong hình bình hành, hai góc đối bằng nhau.

  • C.

    Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường.

  • D.

    Trong hình bình hành, hai cặp cạnh đối song song.

Câu 14 :

Hãy chọn câu sai.

  • A.

    Hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường.

  • B.

    Hình bình hành có hai góc đối bằng nhau.

  • C.

    Hình bình hành có hai đường chéo vuông góc với nhau.

  • D.

    Hình bình hành có hai cặp cạnh đối song song.

Câu 15 :

Cho hình bình hành \(ABCD\). Qua giao điểm \(O\) của các đường chéo, vẽ một đường thẳng cắt các cạnh đối \(BC\) và \(AD\) theo thứ tự \(E\) và \(F\) (đường thẳng này không đi qua trung điểm của \(BC\) và \(AD\)). Khẳng định nào sau đây là đúng?

  • A.

    \(AF = CE\)

  • B.

    \(AF = BE\)

  • C.

    \(DF = CE\)

  • D.
    \(DF = DE\).
Câu 16 :

Cho hình bình hành \(ABCD\). Trên đường chéo \(BD\) lấy hai điểm \(E\) và \(F\) sao cho \(BE = DF < \frac{1}{2}BD\). Khẳng định nào sau đây là đúng?

  • A.

    \(FA=CE\)

  • B.

    \(FA<CE\)

  • C.

    \(FA>CE\)

  • D.
    Chưa kết luận được
Câu 17 :

Cho tam giác \(ABC\) và \(H\) là trực tâm. Các đường thẳng vuông góc với \(AB\) tại \(B\), vuông góc với \(AC\) tại \(C\) cắt nhau ở \(D\). Biết \(\widehat {BAC} = {50^o}\), số đo góc \(BDC\) là:

  • A.

    \(50^{o}\);

  • B.

    \(100^{o}\);

  • C.

    \(150^{o}\);

  • D.

    \(130^{o}\);