Hai tam giác đồng dạng với nhau theo trường hợp cạnh – góc – cạnh nếu
Cho \(\Delta D{\rm{EF}}\) và \(\Delta ILK\) , biết DE = 10cm ; EF = 4cm ; IL = 20cm ; LK = 8cm cần thêm điều kiện gì để \(\Delta D{\rm{EF}} \backsim \Delta {\rm{ILK(c - g - c)?}}\)
Cho \(\Delta {A'}{B'}{C'}\) và \(\Delta ABC\) có \(\hat A = {\hat A'}\) . Để \(\Delta {A'}{B}{C'} \backsim \Delta ABC\) cần thêm điều kiện là:
\(\frac{{{A'}{B'}}}{{AB}} = \frac{{{A'}{C'}}}{{AC}}.\)
\(\frac{{{A'}{B'}}}{{AB}} = \frac{{{B'}{C'}}}{{BC}}.\)
\(\frac{{{A'}{B'}}}{{AB}} = \frac{{BC}}{{{B'}{C'}}}.\)
\(\frac{{{B'}{C'}}}{{BC}} = \frac{{AC}}{{{A'}{C'}}}.\)
Cho \(\Delta MNP \backsim \Delta KIH\) , biết \(\hat M = \hat K,MN = 2cm,MP = 8cm,KH = 4cm\) , thì KI bằng bao nhiêu:
Cho \(\Delta ABC\) , lấy hai điểm D và E lần lượt nằm bên cạnh AB và AC sao cho \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\) Kết luận nào sau đây sai:
Cho \(\Delta ABC\) , có AC = 18cm; AB = 9cm; BC = 15cm. Trên cạnh AC lấy điểm N sao cho AN = 3cm, trên cạnh AB lấy điểm M sao cho AM = 6cm. Tính độ dài đoạn thẳng MN:
Cho hình thang vuông \(ABCD(\hat A = \hat D = {90^0})\) có AB = 16cm, CD = 25cm,
BD = 20cm. Độ dài cạnh BC là:
Cho \(\Delta MNP \backsim \Delta EFH\) theo tỉ số k. Gọi \(M{M'},E{E'}\) lần lượt là hai trung tuyến của \(\Delta MNP\) và \(\Delta EFH\) . Khi đó ta chứng minh được:
\(\frac{{E{E'}}}{{M{M'}}} = k\)
\(\frac{{M{M '}}}{{E{E '}}} = k\)
\(\frac{{M{M '}}}{{E{E '}}} = {k^2}\)
\(\frac{{E{E '}}}{{M{M '}}} = {k^2}\)
Cho tam giác nhọn ABC có \(\hat C = {60^0}\) . Vẽ hình bình hành ABCD. Gọi AH, AK theo thứ tự là các đường cao của tam giác ABC, ACD. Tính số đo góc AKH.
Cho tam giác ABC có AB = 9cm, AC = 16cm, BC = 20cm. Hỏi góc B bằng bao nhiêu lần góc A?
Cho hình thoi ABCD cạnh a, có \(\hat A = {60^0}\) . Một đường thẳng bất kì đi qua C cắt tia đối của các tia BA, DA tương ứng ở M, N. Gọi K là giao điểm của BN và DM. Tính \(\widehat {BKD}\) .