Hãy chọn câu đúng. Cho hình bình hành ABCD, gọi E là trung điểm của AB, F là trung điểm của CD. Khi đó:
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chọn câu trả lời đúng nhất. Tứ giác BDCH là hình gì?
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chọn câu sai.
Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là các điểm sao cho MN // AC; \(MN = \frac{1}{2}AC\); PQ // AC; \(PQ = \frac{1}{2}AC\). Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho \(BE = DF < \frac{1}{2}B{{D}}\). Chọn khẳng định đúng.
Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA sao cho ME // AB; \(ME = \frac{{AB}}{2}\). Tứ giác ADME là:
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB và CD; M, N, P, Q lần lượt là thuộc các cạnh AF, EC, BF, DE và \(FN = \frac{1}{2}DE;FN//DE\); \(EM = \frac{1}{2}BF;EM//BF\) . Khi đó MNPQ là hình gì? Chọn đáp án đúng nhất.
Cho hình bình hành \(ABCD\). Gọi \(H, K\) lần lượt là hình chiếu của \(A, C\) trên đường thẳng \(BD\). Khẳng định nào sau đây là đúng?
\(AH=HC\);
\(AH\parallel BC\);
\(AH=AK\);
Cho tứ giác \(ABCD\). Gọi \(E\), \(F\) lần lượt là trung điểm của \(AB\) và \(CD\); \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm các cạnh \(AF\), \(EC\), \(BF\), \(DE\) và \(FN = \frac{1}{2}DE;\,FN\parallel DE\); \(EM = \frac{1}{2}BF;\,EM\parallel BF\). Khi đó \(MNPQ\) là hình gì? Khẳng định nào sau đây là đúng nhất?
Hình bình hành
Hình thang vuông
Hình thang cân
Cho tam giác \(ABC\) với ba trung tuyến \(AI, BD, CE\) đồng quy tại \(G\) sao cho \(ED\parallel BC;\,ED = \frac{1}{2}BC\). \(M\) và \(N\) lần lượt là các điểm của \(GC\) và \(GB\) và \(MN\parallel BC;\,MN = \frac{1}{2}BC\). Tứ giác \(MNED\) là hình gì?
Hình chữ nhật
Hình bình hành
Hình thang cân