CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
CHƯƠNG 4. ĐỊNH LÍ THALES
CHƯƠNG 5. DỮ LIỆU VÀ BIỂU ĐỒ
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
CHƯƠNG 8. MỞ ĐẦU VỀ TÍNH XÁC SUẤT CỦA BIẾN CỐ
CHƯƠNG 10. MỘT SỐ HÌNH KHỐI TRONG THỰC TIỄN
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Bài 31. Cách tính xác suất của biến cố bằng tỉ số Toán 9 có đáp án - Đề số 1

Trắc nghiệm Bài 31. Cách tính xác suất của biến cố bằng tỉ số - Đề số 1

10 câu hỏi
Trắc nghiệm
Câu 1 :

Trong một lớp 40 bạn, có 15 bạn đạt học sinh giỏi. Gặp ngẫu nhiên một bạn trong lớp. Tính xác suất của biến cố : “Học sinh đó không đạt học sinh giỏi”

  • A.
    0,15.
  • B.
    0,85
  • C.
    0,5.
  • D.
    0,25.
Câu 2 :

Gieo một con xúc xắc 6 mặt cân đối. Tính xác suất của biến cố “Gieo được mặt có số chấm nhiều hơn 6”.

  • A.
    0.
  • B.
    0,2
  • C.
    0,4.
  • D.
    1.
Câu 3 :

Đánh số thứ tự từ 1 đến 10 cho 10 tấm thẻ. Chọn ngẫu nhiên một tấm thẻ. Tính xác suất để chọn được thẻ số chẵn.

  • A.
    \(\frac{2}{5}\)
  • B.
    \(\frac{1}{5}\)
  • C.

    \(\frac{1}{{2}}\)

  • D.
    \(\frac{1}{{10}}\)
Câu 4 :

Một hộp chứa 3 viên bi xanh, 2 viên bi đỏ, 4 viên bi vàng. Lấy ngẫu nhiên 1 viên bi. Xác suất để viên bi lấy được là viên bi vàng là:

  • A.
    \(\frac{2}{9}\)
  • B.
    \(\frac{4}{9}\)
  • C.
    \(\frac{1}{3}\)
  • D.
    \(\frac{5}{9}\) .
Câu 5 :

Chọn ngẫu nhiên một số trong bốn số 11, 12, 13, 14. Tính xác suất của biến cố “Chọn được số chia hết cho 6”

  • A.
    \(\frac{1}{4}\) .
  • B.
    \(\frac{1}{3}\) .
  • C.
    \(\frac{1}{5}\) .
  • D.
    \(\frac{1}{6}\) .
Câu 6 :

Gieo một con xúc xắc 20 lần liên tiếp, có 6 lần xuất hiện mặt 3 chấm thì xác suất của biến cố xuất hiện mặt 3 chấm bằng:

  • A.
    0,15.
  • B.
    0,3.
  • C.
    0,6.
  • D.
    0,36.
Câu 7 :

Gieo một đồng xu cân đối và đồng chất 3 lần và quan sát sự xuất hiện mặt sấp (S) và mặt ngửa (N). Tính xác suất của biến cố “Ít nhất 1 lần xuất hiện mặt sấp”.

  • A.
    \(\frac{5}{6}\) .
  • B.
    \(\frac{1}{6}\) .
  • C.
    \(\frac{1}{8}\) .
  • D.
    \(\frac{7}{8}\) .
Câu 8 :

Danh sách lớp của bạn Minh đánh số từ 1 đến 48. Minh có số thứ tự là 28. Chọn ngẫu nhiên một bạn trong lớp để trực nhật. Tính xác suất để chọn được bạn có số thứ tự lớn hơn số thứ tự của Minh.

  • A.
    \(\frac{{29}}{{48}}\) .
  • B.
    \(\frac{{19}}{{48}}\) .
  • C.
    \(\frac{5}{{12}}\) .
  • D.
    \(\frac{2}{5}\) .
Câu 9 :

Cho một lục giác đều ABCDEF. Viết các chữ cái A, B, C, D, E, F vào sáu cái thẻ. Lấy ngẫu nhiên hai thẻ. Tìm xác suất sao cho đoạn thẳng mà các đầu mút là các điểm được ghi trên hai thẻ đó là cạnh của lục giác.

  • A.
    0,2
  • B.
    0,5
  • C.
    0,4
  • D.
    0,6
Câu 10 :

Một hộp đựng 100 tấm thẻ đánh số từ 1 đến 100. Lấy ngẫu nhiên từ hộp một tấm thẻ. Xác suất để số ghi trên thẻ lấy ra đó chia hết cho 2 hoặc 5 là bao nhiêu?

  • A.
    \(\frac{2}{5}\) .
  • B.
    \(\frac{3}{5}\) .
  • C.
    \(\frac{1}{2}\) .
  • D.
    \(\frac{1}{{10}}\) .