Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\)
Chọn đáp án đúng
Hai tam giác vuông đồng dạng với nhau khi:
Cho tam giác ABC vuông tại A có: \(AB = 3cm,AC = 5cm\) và tam giác MNP vuông tại M có \(MN = 12cm,MP = 20cm.\) Khi đó,
Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{1}{2}.\) Gọi M, M’ lần lượt là trung điểm của BC và B’C’. Khi đó, tỉ số \(\frac{{AM}}{{A'M'}}\) bằng
Trên đoạn \(BC = 13cm,\) đặt đoạn \(BH = 4cm.\) Trên đường vuông góc với BC tại H, lấy điểm A sao cho \(HA = 6cm\)
Cho các khẳng định sau:
1. Số đo góc BAC bằng 80 độ
2. \(AB.AC = AH.BC\)
3. \(\widehat B > \widehat {CAH}\)
Có bao nhiêu khẳng định đúng?
Cho hình thang ABCD vuông tại A và D. Biết \(CD = 2AB = 2AD = 2a\) và \(BC = a\sqrt 2 .\) Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Khi đó:
Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. Kẻ OM vuông góc với CD tại M. Khi đó:
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Gọi I là hình chiếu của M trên AC. Chọn đáp án đúng.
Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’ có chu vi bằng 30cm, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{HC}}{{H'C'}} = \frac{3}{2}\). Chu vi tam giác ABC là:
Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{HC}}{{H'C'}}\). Biết rằng \(\widehat {A'B'C'} = \frac{1}{7}\widehat {BAC}.\) Chọn đáp án đúng
Cho hình thang vuông ABCD, \(\left( {\widehat A = \widehat D = {{90}^0}} \right)\) có \(AB = 4cm,CD = 9cm\) và \(BC = 13cm.\) Khoảng cách từ M đến BC bằng:
Cho tam giác ABC vuông tại A, \(AC = 3AB = 3a.\) Lấy các điểm D, E thuộc AC sao cho \(AD = DE = EC.\) Khi đó,
Cho hình thang vuông ABCD \(\left( {\hat A = \hat D = {{90}^0}} \right)\) có AB = 4cm, CD = 9cm, BC = 13cm. Gọi M là trung điểm của AD. Tính \(\widehat {BMC}\) .