CHƯƠNG 1. ĐA THỨC
Bài 1. Đơn thức
Bài 2. Đa thức
Bài 3. Phép cộng và phép trừ đa thức
Luyện tập chung trang 17
Bài 4. Phép nhân đa thức
Bài 5. Phép chia đa thức cho đơn thức
Luyện tập chung trang 25
Bài tập cuối chương 1
CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
Bài 6. Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Bài 7. Lập phương của một tổng. Lập phương của một hiệu
Bài 8. Tổng và hiệu hai lập phương
Luyện tập chung trang 40
Bài 9. Phân tích đa thức thành nhân tử
Luyện tập chung trang 45
Bài tập cuối chương 2
CHƯƠNG 3. TỨ GIÁC
Bài 10. Tứ giác
Bài 11. Hình thang cân
Luyện tập chung trang 56
Bài 12. Hình bình hành
Luyện tập chung trang 62
Bài 13. Hình chữ nhật
Bài 14. Hình thoi và hình vuông
Luyện tập chung trang 73
Bài tập cuối chương 3
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
Bài 21. Phân thức đại số
Bài 22. Tính chất cơ bản của phân thức đại số
Luyện tập chung trang 13
Bài 23. Phép cộng và phép trừ phân thức đại số
Bài 24. Phép nhân và phép chia phân thức đại số
Luyện tập chung trang 23
Bài tập cuối chương 6
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
Bài 25. Phương trình bậc nhất một ẩn
Bài 26. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 37
Bài 27. Khái niệm hàm số và đồ thị của hàm số
Bài 28. Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Bài 29. Hệ số góc của đường thẳng
Luyện tập chung trang 55
Bài tập cuối chương 7
CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG
Bài 33. Hai tam giác đồng dạng
Bài 34. Ba trường hợp đồng dạng của hai tam giác
Luyện tập chung trang 91
Bài 35. Định lí Pythagore và ứng dụng
Bài 36. Các trường hợp đồng dạng của hai tam giác vuông
Bài 37. Hình đồng dạng
Luyện tập chung trang 108
Bài tập cuối chương 9
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Trường hợp hai cạnh góc vuông Toán 9 có đáp án

Trắc nghiệm Trường hợp hai cạnh góc vuông

18 câu hỏi
30 phút
Trắc nghiệm
Câu 1 :

Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\)

Chọn đáp án đúng

  • A.
    \(\Delta ABC = \Delta DEF\)
  • B.
    \(\Delta ABC \backsim \Delta DFE\)
  • C.
    \(\Delta ABC \backsim \Delta EDF\)
  • D.
    \(\Delta ABC \backsim \Delta DEF\)
Câu 2 :

Hai tam giác vuông đồng dạng với nhau khi:

  • A.
    Hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác kia
  • B.
    Hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác kia
  • C.
    Cả A, B đều đúng
  • D.
    Cả A, B đều sai
Câu 3 :

Cho hình vẽ sau:

Chọn đáp án đúng.

  • A.
    \(\Delta MNP \backsim \Delta DFE\)
  • B.
    \(\Delta MNP \backsim \Delta DEF\)
  • C.
    \(\Delta MNP = \Delta DFE\)
  • D.
    Cả A, B, C đều sai
Câu 4 :

Cho tam giác ABC vuông tại A có: \(AB = 3cm,AC = 5cm\) và tam giác MNP vuông tại M có \(MN = 12cm,MP = 20cm.\) Khi đó,

  • A.
    \(\Delta ABC = \Delta MNP\)
  • B.
    \(\Delta ABC \backsim \Delta MNP\)
  • C.
    \(\Delta BAC \backsim \Delta MNP\)
  • D.
    \(\Delta BCA \backsim \Delta MNP\)
Câu 5 :

Cho hình vẽ:

  • A.
    \(\widehat B = \widehat D\)
  • B.
    \(\widehat B = \frac{2}{3}\widehat D\)
  • C.
    \(\frac{2}{3}\widehat B = \widehat D\)
  • D.
    \(\widehat B = \frac{3}{4}\widehat D\)
Câu 6 :

Cho hình vẽ:

Chọn đáp án đúng

  • A.
    \(\widehat {ABC} + \widehat {EBD} = {80^0}\)
  • B.
    \(\widehat {ABC} + \widehat {EBD} = {85^0}\)
  • C.
    \(\widehat {ABC} + \widehat {EBD} = {95^0}\)
  • D.
    \(\widehat {ABC} + \widehat {EBD} = {90^0}\)
Câu 7 :

Cho hình vẽ:

Chọn đáp án đúng.

  • A.
    \(\widehat {BAH} = \widehat C\)
  • B.
    \(\widehat {BAH} = \frac{2}{3}\widehat C\)
  • C.
    \(\frac{2}{3}\widehat {BAH} = \widehat C\)
  • D.
    Cả A, B, C đều sai
Câu 8 :

Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{1}{2}.\) Gọi M, M’ lần lượt là trung điểm của BC và B’C’. Khi đó, tỉ số \(\frac{{AM}}{{A'M'}}\) bằng

  • A.
    \(\frac{1}{3}\)
  • B.
    \(\frac{1}{4}\)
  • C.
    \(\frac{1}{2}\)
  • D.
    \(2\)
Câu 9 :

Trên đoạn \(BC = 13cm,\) đặt đoạn \(BH = 4cm.\) Trên đường vuông góc với BC tại H, lấy điểm A sao cho \(HA = 6cm\)

Cho các khẳng định sau:

1. Số đo góc BAC bằng 80 độ

2. \(AB.AC = AH.BC\)

3. \(\widehat B > \widehat {CAH}\)

Có bao nhiêu khẳng định đúng?

  • A.
    0
  • B.
    1
  • C.
    3
  • D.
    2
Câu 10 :

Cho hình thang ABCD vuông tại A và D. Biết \(CD = 2AB = 2AD = 2a\) và \(BC = a\sqrt 2 .\) Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Khi đó:

  • A.
    \(\widehat {HDI} = {45^0}\)
  • B.
    \(\widehat {HDI} = {40^0}\)
  • C.
    \(\widehat {HDI} = {50^0}\)
  • D.
    \(\widehat {HDI} = {55^0}\)
Câu 11 :

Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. Kẻ OM vuông góc với CD tại M. Khi đó:

  • A.
    \(AC = \frac{4}{3}MC\)
  • B.
    \(AC = \frac{3}{2}MC\)
  • C.
    \(AC = \frac{2}{3}MC\)
  • D.
    \(AC = MC\)
Câu 12 :

Cho tam giác ABC vuông tại A có M là trung điểm của BC. Gọi I là hình chiếu của M trên AC. Chọn đáp án đúng.

  • A.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{1}{2}\)
  • B.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{1}{3}\)
  • C.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{1}{4}\)
  • D.
    \(\frac{{{S_{AIM}}}}{{{S_{ABC}}}} = \frac{2}{3}\)
Câu 13 :

Cho hình vẽ:

Chọn đáp án đúng

  • A.
    \(CE = \sqrt {66} \)
  • B.
    \(CE = \sqrt {65} \)
  • C.
    \(CE = 8\)
  • D.
    \(CE = 8,5\)
Câu 14 :

Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’ có chu vi bằng 30cm, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{HC}}{{H'C'}} = \frac{3}{2}\). Chu vi tam giác ABC là:

  • A.
    15cm
  • B.
    20cm
  • C.
    30cm
  • D.
    45cm
Câu 15 :

Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{HC}}{{H'C'}}\). Biết rằng \(\widehat {A'B'C'} = \frac{1}{7}\widehat {BAC}.\) Chọn đáp án đúng

  • A.
    \(\widehat {BAC} = {140^0}\)
  • B.
    \(\widehat {BAC} = {100^0}\)
  • C.
    \(\widehat {BAC} = {120^0}\)
  • D.
    \(\widehat {BAC} = {110^0}\)
Câu 16 :

Cho hình thang vuông ABCD, \(\left( {\widehat A = \widehat D = {{90}^0}} \right)\) có \(AB = 4cm,CD = 9cm\) và \(BC = 13cm.\) Khoảng cách từ M đến BC bằng:

  • A.
    4cm
  • B.
    5cm
  • C.
    6cm
  • D.
    7cm
Câu 17 :

Cho tam giác ABC vuông tại A, \(AC = 3AB = 3a.\) Lấy các điểm D, E thuộc AC sao cho \(AD = DE = EC.\) Khi đó,

  • A.
    \(\widehat {AEB} + \widehat {ACB} = {40^0}\)
  • B.
    \(\widehat {AEB} + \widehat {ACB} = {45^0}\)
  • C.
    \(\widehat {AEB} + \widehat {ACB} = {50^0}\)
  • D.
    \(\widehat {AEB} + \widehat {ACB} = {55^0}\)
Câu 18 :

Cho hình thang vuông ABCD \(\left( {\hat A = \hat D = {{90}^0}} \right)\) có AB = 4cm, CD = 9cm, BC = 13cm. Gọi M là trung điểm của AD. Tính \(\widehat {BMC}\) .

  • A.
    \({60^0}\)
  • B.
    \({110^0}\)
  • C.
    \({80^0}\)
  • D.
    \({90^0}\)