CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
CHƯƠNG 4. ĐỊNH LÍ THALES
CHƯƠNG 5. DỮ LIỆU VÀ BIỂU ĐỒ
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
Bài 25. Phương trình bậc nhất một ẩn
Bài 26. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 37
Bài 27. Khái niệm hàm số và đồ thị của hàm số
Bài 28. Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Bài 29. Hệ số góc của đường thẳng
Luyện tập chung trang 55
Bài tập cuối chương 7
CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG
Bài 33. Hai tam giác đồng dạng
Bài 34. Ba trường hợp đồng dạng của hai tam giác
Luyện tập chung trang 91
Bài 35. Định lí Pythagore và ứng dụng
Bài 36. Các trường hợp đồng dạng của hai tam giác vuông
Bài 37. Hình đồng dạng
Luyện tập chung trang 108
Bài tập cuối chương 9
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Trường hợp góc nhọn Toán 9 có đáp án

Trắc nghiệm Trường hợp góc nhọn

23 câu hỏi
30 phút
Trắc nghiệm
Câu 1 :

Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\widehat B = \widehat F\)

Chọn đáp án đúng

  • A.
    \(\Delta ABC = \Delta DEF\)
  • B.
    \(\Delta ABC \backsim \Delta DFE\)
  • C.
    \(\Delta ABC \backsim \Delta EDF\)
  • D.
    \(\Delta ABC \backsim \Delta DEF\)
Câu 2 :

Cho hình vẽ:

Chọn đáp án đúng

  • A.
    \(\Delta IPQ \backsim \Delta IMN\)
  • B.
    \(\Delta IPQ = \Delta IMN\)
  • C.
    \(\Delta IPQ \backsim \Delta INM\)
  • D.
    \(\Delta IPQ \backsim \Delta MNI\)
Câu 3 :

Cho các mệnh đề  sau. Chọn câu đúng.

(I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

  • A.
    (I) đúng, (II) sai
  • B.
    (I) sai, (II) đúng       
  • C.
    (I) và (II) đều sai 
  • D.
    (I) và (II) đều đúng
Câu 4 :

Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?

  • A.
    \(\Delta ACH \backsim \Delta BCA\)
  • B.
    \(\Delta ACH \backsim \Delta CBA\)
  • C.
    \(\Delta ACH \backsim \Delta BAC\)
  • D.
    \(\Delta ACH \backsim \Delta CBA\)
Câu 5 :

Cho hình vẽ:

Chọn đáp án đúng.

  • A.
    \(\frac{{BC}}{{BE}} = 2\frac{{BD}}{{BA}}\)
  • B.
    \(\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\)
  • C.
    \(2\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\)
  • D.
    A, B, C đều sai
Câu 6 :

Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho \(AM = 2m,AM \bot AB\) và đo được góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A’M’B’ vuông tại A’ có \(A'M' = 1cm,\;\widehat {A'M'B'} = \widehat {AMB}\) và đo được \(A'B' = 5cm\) (hình vẽ dưới). Khoảng cách từ A đến B bằng:

  • A.
    4m
  • B.
    6m
  • C.
    8m
  • D.
    10m
Câu 7 :

Cho hình vẽ:

Khẳng định nào sau đây là đúng?

  • A.
    \(D{H^2} = HE + 2HF\)
  • B.
    \(D{H^2} = HE.HF\)
  • C.
    \(D{H^2} = HE + HF\)
  • D.
    \(D{H^2} = HE - HF\)
Câu 8 :

Cho tam giác ABC vuông tại A có \(\widehat B = {30^0}\), tam giác MNP vuông tại M có \(\widehat N = {60^{0.}}\)

Chọn đáp án đúng.

  • A.
    \(AB.PN = MP.BC\)
  • B.
    \(AB.MP = PN.BC\)
  • C.
    \(AB.MP = 2PN.BC\)
  • D.
    \(AB.PN = 2MP.BC\)
Câu 9 :

Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?

  • A.
    \(2AC = CH.BC\)
  • B.
    \(A{C^2} = \frac{1}{2}CH.BC\)
  • C.
    \(A{C^2} = CH.BC\)
  • D.
    \(A{C^2} = 2CH.BC\)
Câu 10 :

Cho tam giác \(ABC\) cân tại \(A\) , đường cao \(CE\) . Tính \(AB\) , biết \(BC = 24\) cm và \(BE = 9\) cm.

  • A.
    16cm
  • B.
    32cm
  • C.
    24cm
  • D.
    18cm
Câu 11 :

Cho hình vẽ:

Chọn đáp án đúng

  • A.
    \(AI.AN + BI.BM = 2A{B^2}\)
  • B.
    \(AI.AN + BI.BM = A{B^2}\)
  • C.
    \(AI.AN + 2BI.BM = A{B^2}\)
  • D.
    \(2AI.AN + BI.BM = A{B^2}\)
Câu 12 :

Cho hình vẽ:

Chọn đáp án đúng.

  • A.
    \(y = 10\)
  • B.
    \(x = 4,8\)
  • C.
    A, B đều đúng
  • D.
    A, B đều sai
Câu 13 :

Cho tam giác ABC cân tại A, \(AC = 20cm,BC = 24cm.\) Các đường cao AD và CE cắt nhau tại H. Khi đó,

  • A.
    \(HD = 12cm\)
  • B.
    \(HD = 6cm\)
  • C.
    \(HD = 9cm\)
  • D.
    \(HD = 10cm\)
Câu 14 :

Cho tam giác ABC vuông tại A, đường cao AH chia đoạn BC thành hai đoạn thẳng \(HB = 7cm,HC = 18cm.\) Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác thành 2 phần có diện tích bằng nhau. Khi đó,

  • A.
    \(CE = 15cm\)
  • B.
    \(CE = 16cm\)
  • C.
    \(CE = 12cm\)
  • D.
    \(CE = 10cm\)
Câu 15 :

Cho hình bình hành ABCD \(\left( {AC > AB} \right)\) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD và H là hình chiếu của B trên AC.

Chọn đáp án đúng.

  • A.
    \(AB.AE + AD.AK = 2A{C^2}\)
  • B.
    \(2AB.AE + AD.AK = A{C^2}\)
  • C.
    \(AB.AE + 2AD.AK = A{C^2}\)
  • D.
    \(AB.AE + AD.AK = A{C^2}\)
Câu 16 :

Cho tam giác ABC vuông tại A. Lấy một điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. Khi đó:

  • A.
    \(BM.BD + CM.CA = \frac{1}{2}B{C^2}\)
  • B.
    \(BM.BD + 2CM.CA = B{C^2}\)
  • C.
    \(BM.BD + CM.CA = B{C^2}\)
  • D.
    \(BM.BD + CM.CA = 2B{C^2}\)
Câu 17 :

Cho tam giác ABC cân tại A, đường cao CE. Biết rằng \(BE = 3cm,BC = 8cm.\)

Độ dài đoạn thẳng AB là:

  • A.
    \(\frac{{34}}{3}cm\)
  • B.
    32cm
  • C.
    \(\frac{{32}}{3}cm\)
  • D.
    35cm
Câu 18 :

Cho hình vẽ. Khẳng định nào sao đây đúng

  • A.
    \(\Delta ABC\,\backsim \Delta ABH\) .
  • B.
    \(\Delta ABC\,\backsim \,\Delta HAB\) .
  • C.

    \(\Delta ABC\,\backsim \,\Delta AHB\) .

  • D.
    \(\Delta ABC\,\backsim \,\Delta HBA\) .
Câu 19 :

Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Hệ thức nào sau đây đúng?

  • A.
    \(AB = BC.BH\).
  • B.
    \(A{C^2} = CH.BH\).
  • C.
    \(A{H^2} = BH.CH\).
  • D.
    \(AH = CH.BH\).
Câu 20 :

Cho hình thang vuông \(ABCD\), \(\left( {\widehat A = \widehat D = 90^\circ } \right)\) có \(DB \bot BC\), \(AB = 4\,{\rm{cm}}\), \(CD = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(BD\) là

  • A.
    \(8\,{\rm{cm}}\).
  • B.
    \(12\,{\rm{cm}}\).
  • C.
    \(9\,{\rm{cm}}\).
  • D.
    \(6\,{\rm{cm}}\).
Câu 21 :

Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\) biết \(BH = 4\,{\rm{cm}}\), \(CH = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(AH\) là

  • A.
    \(4,8\,{\rm{cm}}\).
  • B.
    \(5\,{\rm{cm}}\).
  • C.
    \(6\,{\rm{cm}}\).
  • D.
    \(36\,{\rm{cm}}\).
Câu 22 :

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 30\,{\rm{cm}}\), \(AC = 40\,{\rm{cm}}\). Kẻ đường cao \(AH\)\(\left( {H \in BC} \right)\). Độ dài đường cao \(AH\) là

  • A.
    \(18\,{\rm{cm}}\).
  • B.
    \(24\,{\rm{cm}}\).
  • C.
    \(32\,{\rm{cm}}\).
  • D.
    \(36\,{\rm{cm}}\).
Câu 23 :

\(\Delta ABC\) cân tại \(A\), hai đường cao \(AH\) và \(BK\), cho \(BC = 6\,{\rm{cm}}\), \(AB = 5\,{\rm{cm}}\). Độ dài  đoạn thẳng \(BK\) là

  • A.
    \(4,5\,{\rm{cm}}\).
  • B.
    \(4,8\,{\rm{cm}}\).
  • C.
    \(3\,{\rm{cm}}\).
  • D.
    \(4\,{\rm{cm}}\).