CHƯƠNG 2. HẰNG ĐẲNG THỨC ĐÁNG NHỚ VÀ ỨNG DỤNG
CHƯƠNG 4. ĐỊNH LÍ THALES
CHƯƠNG 5. DỮ LIỆU VÀ BIỂU ĐỒ
CHƯƠNG 6. PHÂN THỨC ĐẠI SỐ
CHƯƠNG 7. PHƯƠNG TRÌNH BẬC NHẤT VÀ HÀM SỐ BẬC NHẤT
Bài 25. Phương trình bậc nhất một ẩn
Bài 26. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 37
Bài 27. Khái niệm hàm số và đồ thị của hàm số
Bài 28. Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Bài 29. Hệ số góc của đường thẳng
Luyện tập chung trang 55
Bài tập cuối chương 7
CHƯƠNG 9. TAM GIÁC ĐỒNG DẠNG
Bài 33. Hai tam giác đồng dạng
Bài 34. Ba trường hợp đồng dạng của hai tam giác
Luyện tập chung trang 91
Bài 35. Định lí Pythagore và ứng dụng
Bài 36. Các trường hợp đồng dạng của hai tam giác vuông
Bài 37. Hình đồng dạng
Luyện tập chung trang 108
Bài tập cuối chương 9
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Công thức lãi kép
Thực hiện tính toán trên đa thức với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm GeoGebra
Phân tích đặc điểm khí hậu Việt Nam
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Mô tả thí nghiệm ngẫu nhiên với phần mềm Excel
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Tính xác suất thực nghiệm Toán 9 có đáp án

Trắc nghiệm Tính xác suất thực nghiệm

14 câu hỏi
30 phút
Trắc nghiệm
Câu 1 :

Giả sử trong n lần thực nghiệm một hiện tượng ta thấy biến cố E xảy ra k lần, xác suất thực nghiệm của biến cố E tính bằng công thức nào?

  • A.
    \(\frac{n}{k}\)
  • B.
    \(\frac{k}{n}\)
  • C.
    \(\frac{n}{{k + n}}\)
  • D.
    \(\frac{k}{{k + n}}\)
Câu 2 :

Xác suất thực nghiệm càng gần xác suất khi?

  • A.
    khi số phép thử càng nhỏ.
  • B.
    khi số phép thử càng lớn.
  • C.
    khi có một phép thử.
  • D.
    khi số phép thử bằng 60.
Câu 3 :

Nếu tung một đồng xu 13 lần liên tiếp; có 9 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu??

  • A.
    \(\frac{9}{{13}}\)
  • B.
    \(\frac{{13}}{{35}}\)
  • C.
    \(\frac{4}{{13}}\)
  • D.
    \(\frac{9}{{22}}\)
Câu 4 :

Minh tập bắn súng. Khi thực hiện bắn \(100\) lần thì có \(35\) lần trúng đích. Tính xác suất thực nghiệm của biến cố bắn trúng đích.

  • A.
    \(\frac{7}{{20}}\)
  • B.
    \(\frac{7}{{13}}\)
  • C.
    \(\frac{{13}}{{20}}\)
  • D.
    \(\frac{1}{2}\)
Câu 5 :

Trong trò chơi bánh xe quay số. Bánh xe số có \(20\) nấc điểm: \(5\) ; \(10\) ; \(15\) ; \(20\) ; …; \(100\) với các vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có hai người tham gia, mỗi người được quay một lần và điểm của người chơi là điểm quay được. Người nào có số điểm cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. Nam và Bình cùng tham gia một lượt chơi. Nam chơi trước và được \(85\) điểm. Hãy tính xác suất thực nghiệm của sự kiện Bình thắng cuộc ở lượt chơi này.

  • A.
    \(\frac{4}{5}\) .
  • B.
    \(\frac{{17}}{{20}}\) .
  • C.
    \(\frac{1}{5}\) .
  • D.
    \(\frac{3}{{20}}\) .
Câu 6 :

Cho dãy số liệu về số lượng đạt tuần học tốt của các lớp trong một năm học của một trường THCS như sau:

Hãy tính xác suất thực nghiệm của biến cố: “ Lớp được chọn là lớp đạt 8 tuần học tốt”

  • A.
    0,25.
  • B.
    0,3.
  • C.
    0,75.
  • D.
    0,5.
Câu 7 :

Tỉ lệ số học sinh đạt học sinh giỏi trong một lớp là \(15\% \) . Gặp ngẫu nhiên một bạn trong lớp. Tính xác suất thực nghiệm của biến cố : “Học sinh đó đạt học sinh giỏi”

  • A.
    0,15.
  • B.
    0,85.
  • C.
    0,5.
  • D.
    0,25.
Câu 8 :

Trong buổi thực hành môn Khoa học tự nhiên đo thể tích của vật thể không xác định được hình dạng, lớp 6A có 40 học sinh thực hiện phép đo thì có 35 học sinh thực hiện thành công. Em hãy tính xác suất thực nghiệm của biến cố: “Phép đo được thực hiện không thành công.”

  • A.
    \(\frac{8}{7}\) .
  • B.
    \(\frac{1}{7}\)
  • C.
    \(\frac{1}{8}\) .
  • D.
    \(\frac{7}{8}\) .
Câu 9 :

Gieo một xúc xắc \(10\) lần liên tiếp, bạn Cường có kết quả như sau:

Tính xác suất thực nghiệm xuất hiện mặt 1 chấm.

  • A.
    \(\frac{2}{5}\)
  • B.
    \(\frac{1}{5}\)
  • C.
    \(\frac{3}{{10}}\)
  • D.
    \(\frac{1}{{10}}\)
Câu 10 :

Một hộp chứa 3 viên bi xanh, 2 viên bi đỏ, 4 viên bi vàng. Lấy ngẫu nhiên 1 viên bi. Xác suất để viên bi lấy được là viên bi vàng là:

  • A.
    \(\frac{2}{9}\)
  • B.
    \(\frac{4}{9}\)
  • C.
    \(\frac{1}{3}\)
  • D.
    \(\frac{5}{9}\) .
Câu 11 :

Bạn Hoàng Linh tung đồng xu 50 lần thấy có 30 lần xuất hiện mặt \(S\) còn bạn Tú Anh tung 100 lần và thấy có 55 lần xuất hiện mặt \(S\) . Bạn Hoàng Linh nói xác suất thực nghiệm xuất hiện mặt \(S\) là \(\frac{{30}}{{50}}\) ; còn bạn Tú Anh bảo rằng xác suất thực nghiệm xuất hiện mặt \(S\) là \(\frac{{55}}{{100}}\) . Vậy trong hai bạn thì bạn nào nói đúng ?

  • A.
    Bạn Tú Anh.
  • B.
    Bạn Hoàng Linh.
  • C.
    Cả hai bạn.
  • D.
    Không bạn nào.
Câu 12 :

Trong một hộp kín có ba quả bóng: một đỏ (Đ), một xanh (X), một vàng (V). Lấy ngẫu nhiên một bóng, xem màu, ghi kết quả rồi trả bóng vào hộp. Lặp lại các thao tác trên nhiều lần, kết quả ghi trong bảng sau:

Khả năng chọn được bóng của màu nào cao hơn?

  • A.
    Khả năng chọn được bóng màu vàng cao hơn chọn được bóng màu đỏ, màu xanh.
  • B.
    Khả năng chọn được bóng màu xanh cao hơn chọn được bóng màu đỏ, màu vàng.
  • C.
    Khả năng chọn được bóng màu đỏ cao hơn chọn được bóng màu vàng, màu xanh..
  • D.
    Chưa đủ dữ kiện để so sánh.
Câu 13 :

Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:

Tính xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên được loại khá trở lên ở cả 2 môn?

  • A.
    \(\frac{9}{{28}}\) .
  • B.
    \(\frac{3}{{14}}\) .
  • C.
    \(\frac{{19}}{{28}}\) .
  • D.
    \(\frac{5}{{14}}\) .
Câu 14 :

Gieo một con xúc xắc 6 mặt 50 lần ta được kết quả như sau:

Hãy tính xác suất thực nghiệm của biến cố:” Gieo được mặt có số chẵn chấm trong 50 lần gieo trên”.

  • A.
    \(0,16\) .
  • B.
    \(0,52\) .
  • C.
    \(0,48\) .
  • D.
    \(0,5\) .