Bài 9 trang 170 SBT hình học 12


Giải bài 9 trang 170 sách bài tập hình học 12. Trong không gian Oxyz cho hình lập phương ABCD.A’B’C’D’ với A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1)...

Đề bài

Trong không gian Oxyz cho hình lập phương ABCD.A’B’C’D’ với A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1)

a) Hãy tìm tọa độ các đỉnh còn lại.

b) Chứng minh A'C ⊥ (BC'D)

c) Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.

Lời giải chi tiết

a) Dễ thấy C(1; 1; 0), B'(1; 0; 1), D'(0; 1; 1), C'(1; 1; 1), D'(0; 1; 1).

b) Ta có: \(\overrightarrow {A'C}  = \left( {1;1; - 1} \right)\)

\(\overrightarrow {BC'}  = \left( {0;1;1} \right)\), \(\overrightarrow {BD}  = \overrightarrow {B'D'}  = \left( { - 1;1;0} \right)\)

Do đó \(\overrightarrow {A'C} .\overrightarrow {BC'}  = 0\) và \(\overrightarrow {A'C} .\overrightarrow {BD}  = 0\)

Từ đó suy ra \(A'C \bot BC',A'C \bot BD\) nên A'C ⊥ (BC'D).

c)

Gọi IJ là đường vuông góc chung của B'D' và BC'

\(\overrightarrow {{n_1}} \) là vectơ pháp tuyến của mặt phẳng (P) qua B'D' và song song với A’C

\(\overrightarrow {{n_2}} \) là vectơ pháp tuyến của mặt phẳng (Q) qua BC' và song song với A'C.

Khi đó \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {A'C} ,\overrightarrow {B'D'} } \right] = \left( {1;1;2} \right)\)

\(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {A'C} ,\overrightarrow {BC'} } \right] = \left( {2; - 1;1} \right)\)

Phương trình của (P) là: (x - 1) + y + 2(z - 1) = 0 hay x + y + 2z - 3 = 0.

Phương trình của (Q) là: 2(x - 1) - y + z = 0 hay 2x - y + z - 2 = 0.

Phương trình của (B'D') là: \(\left\{ \begin{array}{l}x = 1 - t\\y = t\\z = 1\end{array} \right.\) .

Phương trình của (BC') là: \(\left\{ \begin{array}{l}x = 1\\y = t\\z = t\end{array} \right.\)

I là giao điểm của đường thẳng B'D' và (Q), để tìm tọa độ của I ta thế phương trình đường thẳng B'D' vào phương trình của (Q)

Ta có: 2(1 - t) - t + 1 - 2 = 0, hay t = 1/3.

Từ đó suy ra I(2/3; 1/3; 1)

Tương tự, ta tìm được J(1; 2/3; 1/3).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài