Bài 5 trang 169 SBT hình học 12


Đề bài

Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: \(\frac{x}{{ - 3}} = \frac{y}{{ - 1}} = \frac{z}{2}\)

a) Viết phương trình mặt phẳng (P) đi qua A, song song với d, sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P).

b) Tìm tập hợp những điểm cách đều ba điểm A, B, C.

Lời giải chi tiết

a) Có hai trường hợp xảy ra:

Trường hợp 1:

(P) đi qua A, song song với hai đường thẳng d và BC.

Vectơ chỉ phương của d là \(\overrightarrow v  = \left( { - 3; - 1;2} \right)\) và \(\overrightarrow {BC}  = \left( { - 2;4;0} \right)\)

Do đó \(\overrightarrow {{n_{\left( P \right)}}}  = \left[ {\overrightarrow v ,\overrightarrow {BC} } \right] = \left( { - 8; - 4; - 14} \right)\)

Phương trình mặt phẳng (P) là:

-8(x - 1) - 4(y - 2) - 14(z - 1) = 0 hay 4x + 2y + 7z - 15 = 0

Trường hợp 2:

(P) đi qua A, đi qua trung điểm F(1; 1; 1) của BC, và song song với d.

Ta có: \(\overrightarrow {FA}  = \left( {0;1;0} \right),\left[ {\overrightarrow {FA} ,\overrightarrow v } \right] = \left( {2;0;3} \right)\)

Suy ra phương trình của (P) là:

2(x - 1) + 3(z - 1) = 0 hay 2x + 3z - 5 = 0.

b) Gọi (Q) và (R) theo thứ tự là mặt phẳng trung trực của AB và BC.

Những điểm cách đều ba điểm A, B, C là giao tuyến Δ = (Q) ∩ (R).

(Q) đi qua trung điểm E(3/2; 1/2; 1) của AB và có \(\overrightarrow {{n_Q}}  = \overrightarrow {AB}  = \left( {1; - 3;0} \right)\)

Do đó phương trình của (Q) là:

x - 3/2 - 3(y - 1/2) = 0 hay x - 3y = 0

(R) đi qua trung điểm F(1; 1; 1) của BC và có \(\overrightarrow {{n_R}}  = \overrightarrow {BC}  = \left( { - 2;4;0} \right)\)

Do đó phương trình (R) là: x - 2y + 1 = 0

Ta có: \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_R}} } \right] = \left( {0;0; - 2} \right)\)

Lấy D(-3; -1; 0) thuộc (Q) ∩ (R)

Suy ra Δ là đường thẳng đi qua D và có vectơ chỉ phương \(\overrightarrow u  = \left( {0;0;1} \right)\)

nên có phương trình là: \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\\z = t\end{array} \right.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 6 trang 169 SBT hình học 12

    Giải bài 6 trang 169 sách bài tập hình học 12. Cho hai đường thẳng...

  • Bài 7 trang 169 SBT hình học 12

    Giải bài 7 trang 169 sách bài tập hình học 12. Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - z + 5 = 0 và hai điểm A(-2; -1; 1), B(6; 6; 5)...

  • Bài 8 trang 169 SBT hình học 12

    Giải bài 8 trang 169 sách bài tập hình học 12. Trong không gian Oxyz, cho mặt cầu (S):...

  • Bài 9 trang 170 SBT hình học 12

    Giải bài 9 trang 170 sách bài tập hình học 12. Trong không gian Oxyz cho hình lập phương ABCD.A’B’C’D’ với A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1)...

  • Bài 10 trang 170 SBT hình học 12

    Giải bài 10 trang 170 sách bài tập hình học 12. Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0)...

  • Bài 4 trang 169 SBT hình học 12

    Giải bài 4 trang 169 sách bài tập hình học 12. Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H)...

  • Bài 3 trang 169 SBT hình học 12

    Giải bài 3 trang 169 sách bài tập hình học 12. Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c...

  • Bài 2 trang 168 SBT hình học 12

    Giải bài 2 trang 168 sách bài tập hình học 12. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC...

  • Bài 1 trang 168 SBT hình học 12

    Giải bài 1 trang 168 sách bài tập hình học 12. Cho lăng trụ ABC.A'B'C'...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.