Bài 6 trang 169 SBT hình học 12


Giải bài 6 trang 169 sách bài tập hình học 12. Cho hai đường thẳng...

Đề bài

Cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 3 + t\\y = 1 - t\\z = 2t\end{array} \right.,d':\left\{ \begin{array}{l}x = 1 + t'\\y = 2t'\\z =  - 1 + t'\end{array} \right.\) và M(2; -1; 0)

a) Chứng minh rằng d và d' chéo nhau.

b) Tìm tọa độ điểm A trên d và điểm B trên d' để M, A, B thẳng hàng.

Lời giải chi tiết

a) Ta chứng minh được d không song song với d' vì chúng có các vectơ chỉ phương không cùng phương.

Giải hệ phương trình \(\left\{ \begin{array}{l}3 + t = 1 + t'\\1 - t = 2t'\\2t =  - 1 + t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 1\\t =  - 1\\2t =  - 1 + t'\end{array} \right.\)

⇒ hệ phương trình vô nghiệm

Do đó d và d' chéo nhau.

b) Lấy A(3 + t; 1 - t; 2t) thuộc d và B(1 + t'; 2t'; -1 + t') thuộc d'.

Ta có \(\overrightarrow {MA}  = \left( {1 + t;1 - t;2t} \right),\) \(\overrightarrow {MB}  = \left( { - 1 + t';1 + 2t'; - 1 + t'} \right)\)

M, A, B thẳng hàng \( \Leftrightarrow \overrightarrow {MB}  = k\overrightarrow {MA} \) \( \Leftrightarrow \left\{ \begin{array}{l} - 1 + t' = k\left( {1 + t} \right)\\1 + 2t' = k\left( {2 - t} \right)\\ - 1 + t' = k.2t\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' =  - 1\\k =  - 1\end{array} \right.\)

Từ đó suy ra A(4; 0; 2), B(0; -2; -2).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài