Bài 46 trang 105 Vở bài tập toán 8 tập 2


Giải bài 46 trang 105 VBT toán 8 tập 2. Hình thang ABCD (AB//CD) có AC và BD cắt nhau tại O, AD và BC cắt nhau tại K. Chứng minh rằng OK đi qua trung điểm của các cạnh AB và CD.

Đề bài

Hình thang \(ABCD \,(AB//CD)\) có \(AC\) và \(BD\) cắt nhau tại \(O, AD\) và \(BC\) cắt nhau tại \(K\). Chứng minh rằng \(OK\) đi qua trung điểm của các cạnh \(AB\) và \(CD\).

Phương pháp giải - Xem chi tiết

Qua \(O\) kẻ đường thẳng song song với \(AB, CD\) cắt \(AD, BC\) lần lượt tại \(E, F\).

- Chứng minh \(\dfrac{{AN}}{{EO}}=\dfrac{{BN}}{{FO}}\).

- Chứng minh \(\dfrac{{EO}}{{DM}}=\dfrac{{FO}}{{CM}}\).

Lời giải chi tiết

Qua \(O\) kẻ \(EF//AB\left( {E \in AD,F \in BC} \right)\) (h.54)

Trước hết hãy chứng minh rằng \(OE=OF\).

Xét \(\Delta DAC\) có \(EO//DC\) nên ta có:

\(\dfrac{{EO}}{{DC}} = \dfrac{{AO}}{{AC}}\) (1)

Xét \(\Delta DBC\) có \(OF//DC\) nên ta có:

\(\dfrac{{OF}}{{DC}} = \dfrac{{BO}}{{BD}}\) (2)

Vì \(AB//CD\) nên ta có:

\(\dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}}\) \( \Rightarrow \dfrac{{OA}}{{AC}} = \dfrac{{OB}}{{BD}}\) (3)

Từ các đẳng thức (1), (2) và (3) suy ra \(\dfrac{{EO}}{{DC}} = \dfrac{{OF}}{{DC}} \Rightarrow EO = OF\) (4)

Từ \(AB//EF\), ta có:

\(\dfrac{{AN}}{{EO}} = \dfrac{{KN}}{{KO}}\) và \(\dfrac{{KN}}{{KO}} = \dfrac{{BN}}{{OF}}\) suy ra \(\dfrac{{AN}}{{EO}} = \dfrac{{BN}}{{OF}}\) \( \Rightarrow AN = BN\) (vì \(EO = OF\)).

Vậy \(N\) là trung điểm của \(AB\).

Tương tự như vậy, từ \(CD//EF\), ta có:

\(\dfrac{{EO}}{{DM}} = \dfrac{{KO}}{{KM}}\) và \(\dfrac{{KO}}{{KM}} = \dfrac{{OF}}{{CM}}\); suy ra \(\dfrac{{EO}}{{DM}} = \dfrac{{OF}}{{CM}}\) \( \Rightarrow DM = CM\) (vì \(EO = OF\)).

Vậy \(M\) là trung điểm của \(CD\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí