Bài 4.15 trang 202 SBT giải tích 12


Giải bài 4.15 trang 202 sách bài tập giải tích 12. Cho hai số phức...

Đề bài

a) Cho hai số phức \({z_1} = 1\; + 2i;{z_2} = 2 - 3i\). Xác định phần thực và phần ảo của số phức \({z_1} - 2{z_2}\) .

b) Cho hai số phức \({z_1} = 2\; + 5i;{z_2} = 3 - 4i\). Xác định phần thực và phần ảo của số phức \({z_1}.{z_2}\).

Phương pháp giải - Xem chi tiết

Thực hiện các phép toán với số phức và kết luận.

Lời giải chi tiết

a) Ta có:

\({z_1} = 1\; + 2i;{z_2} = 2 - 3i\)\( \Rightarrow {z_1} - 2{z_2} = 1 + 2i - 2\left( {2 - 3i} \right)\) \( = 1 + 2i - 4 + 6i\) \( =  - 3 + 8i\)

Phần thực \({z_1} - 2{z_2}\) là \( - 3\), phần ảo của nó là \(8\).

b) Ta có:

\({z_1}{z_2} = \left( {2 + 5i} \right)\left( {3 - 4i} \right)\) \( = 6 + 15i - 8i + 20\) \( = 26 + 7i\).

Phần thực và phần ảo của \({z_1}.{z_2}\) tương ứng là \(26\) và \(7\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài