Bài 4.12 trang 202 SBT giải tích 12


Giải bài 4.12 trang 202 sách bài tập giải tích 12. Cho z = a + bi. Chứng minh rằng:...

Đề bài

Cho \(z = a + bi\). Chứng minh rằng:

a) \({z^2} + {\left( {\overline z } \right)^2} = 2({a^2} - {b^2})\)

b) \({z^2} - {\left( {\overline z } \right)^2} = 4abi\)

c) \({z^2}{\left( {\overline z } \right)^2} = {\left( {{a^2} + {b^2}} \right)^2}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(z = a + bi\) thì \(\overline z  = a - bi\) và thay vào vế trái mỗi đẳng thức, biến đổi đưa về vế phải và kết luận.

Lời giải chi tiết

Ta có: \({z^2} = {(a + bi)^2} = {a^2} - {b^2} + 2abi\)

\({(\overline  z)^2} = {(a - bi)^2} = {a^2} - {b^2} - 2abi\)

a) \({z^2} + {\left( {\overline z } \right)^2}\) \( = {a^2} - {b^2} + 2abi + {a^2} - {b^2} - 2abi\) \( = 2\left( {{a^2} - {b^2}} \right)\).

b) \({z^2} - {\left( {\overline z } \right)^2}\)\( = {a^2} - {b^2} + 2abi - {a^2} + {b^2} + 2abi\)\( = 4abi\).

c) \({z^2}.{\left( {\overline z } \right)^2} = {\left( {z.\overline z } \right)^2}\) \( = {\left[ {\left( {a + bi} \right)\left( {a - bi} \right)} \right]^2} \) \(= {\left( {{a^2} - {b^2}{i^2}} \right)^2} = {\left( {{a^2} + {b^2}} \right)^2}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài