Bài 27 trang 78 Vở bài tập toán 7 tập 2


Đề bài

Cho \(G\) là trọng tâm của tam giác đều \(ABC.\) Chứng minh rằng \(GA = GB = GC.\) (h.26) 

Phương pháp giải - Xem chi tiết

Áp dụng định lí ở bài tập \(26\): Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.

Lời giải chi tiết

Gọi \(G\) là giao điểm của ba đường trung tuyến là \(AD,\,BE,\,CF.\)

Tam giác \(ABC\) đều nên nó cân tại cân tại \(A\), do đó ta có \(BE = CF\)  (1). 

Tam giác đều \(ABC\) cũng cân tại \(B\), do đó ta có \(AD = CF\) (2)

Từ (1) và (2) suy ra \(BE=AD=CF\) (3). Mặt khác, do \(G\) là trọng tâm của tam giác \(ABC\) nên ta còn có

\(GA = \dfrac{2}{3}AD\); \(BG = \dfrac{2}{3}BE\); \(CG = \dfrac{2}{3}CF\)

Vậy từ (3) suy ra: \(GA = GB = GC\). 

Loigiaihay.com


Bình chọn:
4.3 trên 10 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.