Bài 26 trang 78 Vở bài tập toán 7 tập 2


Đề bài

Cho tam giác \(DEF\) cân tại \(D\) với đường trung tuyến \(DI\). (h.25).

a) Chứng minh \(∆DEI  = ∆DFI;\)

b) Các góc \(DIE\) và góc \(DIF\) là những góc gì?

c) Biết \(DE = DF = 13\,cm,\) \(EF = 10\,cm,\) hãy tính độ dài đường trung tuyến \(DI.\) 

Phương pháp giải - Xem chi tiết

Áp dụng tính chất của tam giác cân, tính chất đường trung tuyến và định lý Pytago.

Quảng cáo
decumar

Lời giải chi tiết

a) Xét hai tam giác \(DEI\) và \(DFI\). 

Theo giả thiết ta có \(DE = DF\) và \(IE = IF\). Hơn nữa, \(DI\) là cạnh chung. Vậy \(∆DEI  = ∆DFI\) (c.c.c).

b) Theo câu a, \(∆DEI  = ∆DFI\), suy ra \(\widehat{DIE} =\widehat{DIF}\). Mặt khác, \(\widehat{DIE} +\widehat{DIF} = 180^o\), do đó \(\widehat{DIE} =\widehat{DIF}= 90^o\) 

c) Ta có tam giác \(DEI\) vuông tại \(I\) (câu b). Theo định lí Pytago, ta có \(DI = \sqrt {D{E^2} - E{I^2}} \)

Mặt khác, vì \(I\) là trung điểm của \( EF\) nên \(IE = IF =\dfrac{{EF}}{2} = \dfrac{{10}}{2}= 5\,(cm).\)

Vậy \(DI = \sqrt {{{13}^2} - {5^2}}  = 12\left( {cm} \right).\)

Loigiaihay.com


Bình chọn:
4.6 trên 25 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.