Bài 2.34 trang 118 SBT giải tích 12


Đề bài

Hãy so sánh \(\displaystyle x\) với \(\displaystyle 1\), biết rằng:

a) \(\displaystyle {\log _3}x =  - 0,3\)

b) \(\displaystyle {\log _{\frac {1}{3}}}x = 1,7\)

c) \(\displaystyle {\log _2}x = 1,3\)

d) \(\displaystyle {\log _{\frac {1}{4}}}x =  - 1,1\)

Phương pháp giải - Xem chi tiết

Tìm \(\displaystyle x\) và so sánh, sử dụng tính chất so sánh mũ.

Lời giải chi tiết

a) \(\displaystyle {\log _3}x =  - 0,3 \Leftrightarrow x = {3^{ - 0,3}}\).

Vì \(\displaystyle 3 > 1\) và \(\displaystyle  - 0,3 < 0\) nên \(\displaystyle {3^{ - 0,3}} < {3^0} = 1\) hay \(\displaystyle x < 1\).

b) \(\displaystyle {\log _{\frac {1}{3}}}x = 1,7 \Leftrightarrow x = {\left( {\frac {1}{3}} \right)^{1,7}}\)

Vì \(\displaystyle 0 < \frac {1}{3} < 1\) và \(\displaystyle 1,7 > 0\) nên \(\displaystyle {\left( {\frac {1}{3}} \right)^{1,7}} < {\left( {\frac {1}{3}} \right)^0} = 1\) hay \(\displaystyle x < 1\).

c) \(\displaystyle {\log _2}x = 1,3 \Leftrightarrow x = {2^{1,3}}\).

Vì \(\displaystyle 2 > 1\) và \(\displaystyle 1,3 > 0\) nên \(\displaystyle {2^{1,3}} > {2^0} = 1\) hay \(\displaystyle x > 1\).

d) \(\displaystyle {\log _{\frac {1}{4}}}x =  - 1,1 \Leftrightarrow x = {\left( {\frac {1}{4}} \right)^{ - 1,1}}\)

Vì \(\displaystyle 0 < \frac {1}{4} < 1\) và \(\displaystyle  - 1,1 < 0\) nên \(\displaystyle {\left( {\frac {1}{4}} \right)^{ - 1,1}} > {\left( {\frac {1}{4}} \right)^0} = 1\) hay \(\displaystyle x > 1\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.