Bài 13 trang 77 Vở bài tập toán 8 tập 2


Giải bài 13 trang 77 VBT toán 8 tập 2. Cho hình thang ABCD (AB // CD) ...

Đề bài

Cho hình thang \(ABCD\) (\(AB // CD\)).

Đường thẳng \(a\) song song với \(DC\), cắt các cạnh \(AD\) và \(BC\) theo thứ tự là \(E\) và \(F.\)

Chứng minh rằng:

a) \(\dfrac{AE}{ED} = \dfrac{BF}{FC}\);

b) \(\dfrac{AE}{AD} = \dfrac{BF}{BC}\)

c) \(\dfrac{DE}{DA} = \dfrac{CF}{CB}\).

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất của dãy tỉ số bằng nhau, định lí TaLet.

Lời giải chi tiết

Vẽ thêm đường chéo \(AC\), \(AC\) cắt \(EF\) tại \(K\) (h.20)

+ Xét \(∆ACD\) có \(EK // DC\) (giả thiết)

Ta có: \( \dfrac{AE}{ED} = \dfrac{AK}{KC}\)       (1)

+ Xét \(∆CAB\) có \(FK // AB\) (giả thiết)

Ta có: \(\dfrac{AK}{KC} = \dfrac{BF}{FC}\)         (2)

Từ các tỉ lệ thức (1) và (2), ta suy ra: \( \dfrac{AE}{ED} = \dfrac{BF}{FC}\).

Tương tự như trên, xét \(\Delta ACD\) có \(EK//CD\) và \(\Delta CAB\) có \(KF//AB.\) Ta có:

\(\dfrac{{AE}}{{AD}} = \dfrac{{AK}}{{AC}};\,\dfrac{{AK}}{{AC}} = \dfrac{{BF}}{{BC}}.\) Suy ra \(\dfrac{{AE}}{{AD}} = \dfrac{{BF}}{{BC}}\).

\(\dfrac{{DE}}{{DA}} = \dfrac{{CK}}{{CA}};\,\dfrac{{CK}}{{CA}} = \dfrac{{CF}}{{CB}}.\) Suy ra \(\dfrac{{DE}}{{DA}} = \dfrac{{CF}}{{CB}}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài