Bài 12 trang 76 Vở bài tập toán 8 tập 2


Giải bài 12 trang 76 VBT toán 8 tập 2. Cho tam giác ABC với đường trung tuyến AM. Tia phân giác của góc AMB cắt cạnh AB ở D, tia phân giác của góc AMC cắt cạnh AC ở E.

Đề bài

Cho tam giác \(ABC\) với đường trung tuyến \(AM\). Tia phân giác của góc \(AMB\) cắt cạnh \(AB\) ở \(D\), tia phân giác của góc \(AMC\) cắt cạnh \(AC\) ở \(E\). Chứng minh rằng \(DE // BC\) (h.19)

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất đường phân giác của tam giác, định lí TaLet đảo.

Lời giải chi tiết

Ta có \(MD\) là đường phân giác góc \(M\) của tam giác \(ABM\) (giả thiết)

\(\Rightarrow \dfrac{AD}{BD} = \dfrac{AM}{BM}\) (1) (tính chất đường phân giác của tam giác)

\(ME\) là đường phân giác góc \(M\) của tam giác \(ACM\) (giả thiết) 

\(\Rightarrow \dfrac{AE}{CE}= \dfrac{AM}{MC}\) (2) (tính chất đường phân giác của tam giác)

Mà \(MB = MC\) (vì \(AM\) là đường trung tuyến nên \(M\) là trung điểm cạnh\(BC\))

\( \Rightarrow \dfrac{AM}{BM} = \dfrac{AM}{MC}\) (3)

Từ (1), (2), (3) \(\Rightarrow \dfrac{AD}{BD}= \dfrac{AE}{CE}\) 

\( \Rightarrow  DE // BC\) ( theo định lí Talet đảo).

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí