Bài 1 trang 6 Vở bài tập toán 9 tập 1


Giải bài 1 trang 6 VBT toán 9 tập 1. Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng: 121;144;169;225;256;324;361;400

Đề bài

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

\(121;144;169;225;\) \(256;324;361;400\)

Phương pháp giải - Xem chi tiết

Áp dụng định nghĩa căn bậc hai và căn bậc hai số học

- Căn bậc hai của số không âm a là số \(x\)  sao cho \({x^2} = a\).

- Với số dương a, số \(\sqrt a \) được gọi là căn bậc hai số học của số a.

Lời giải chi tiết

- Căn bậc hai số học của 121 là \(\sqrt {121} \)

Ta có : \(\sqrt {121}  = 11\) vì \({11^2} = 121\) và \(11 > 0\).

Ta suy ra căn bậc hai của \(121\) là \(\sqrt {121} \) và\( - \sqrt {121} \) hay \(11\) và \(\left( { - 11} \right)\).

- Căn bậc hai số học của \(144\) là \(\sqrt {144} \)

Ta có :\(\sqrt {144}  = 12\) vì \({12^2} = 144\) và \(12 > 0\).

Ta suy ra căn bậc hai của \(144\) là \(\sqrt {144} \) và \( - \sqrt {144} \) hay \(12\) và \(\left( { - 12} \right)\).

- Căn bậc hai số học của \(169\) là \(\sqrt {169} \).

Ta có : \(\sqrt {169}  = 13\) vì \({13^2} = 169\) và \(13 > 0\).

Ta suy ra căn bậc hai của \(169\) là \(\sqrt {169} \) và \( - \sqrt {169} \) hay \(13\) và \(\left( { - 13} \right)\).

- Căn bậc hai số học của \(225\) là \(\sqrt {225} \).

Ta có : \(\sqrt {225}  = 15\) vì \({15^2} = 225\) và \(15 > 0\).

Ta suy ra căn bậc hai của \(225\) là \(\sqrt {225} \)và \( - \sqrt {225} \) hay \(15\) và \(\left( { - 15} \right)\).

- Căn bậc hai số học của \(256\) là \(\sqrt {256} \).

Ta có : \(\sqrt {256}  = 16\) vì \({16^2} = 256\) và \(16 > 0\).

Ta suy ra căn bậc hai của \(256\) là \(16\) và \(\left( { - 16} \right)\).

- Căn bậc hai số học của \(324\) là \(\sqrt {324} \).

Ta có : \(\sqrt {324}  = 18\) vì \({18^2} = 256\) và \(18 > 0\).

Ta suy ra căn bậc hai của \(324\) là \(\sqrt {324} \) và \( - \sqrt {324} \) hay \(18\) và \(\left( { - 18} \right)\).

- Căn bậc hai số học của \(361\) là \(\sqrt {361} \).

Ta có : \(\sqrt {361}  = 19\) vì \({19^2} = 361\) và \(19 > 0\).

Ta suy ra căn bậc hai của \(361\) là \(\sqrt {361} \) và \( - \sqrt {361} \) hay \(19\) và \(\left( { - 19} \right)\).

- Căn bậc hai số học của \(400\) là \(\sqrt {400} \).

Ta có : \(\sqrt {400}  = 20\) vì \({20^2} = 400\) và \(20 > 0\).

Ta suy ra căn bậc hai của \(400\) là \(\sqrt {400} \) hoặc \( - \sqrt {400} \) hay \(20\)  và \(\left( { - 20} \right)\).

Chú ý khi giải:

- Phân biệt khái niệm căn bậc hai và căn bậc hai số học.

- Căn bậc hai của một số là hai số đối nhau.

Loigiaihay.com


Bình chọn:
4.3 trên 10 phiếu

Các bài liên quan: - Bài 1. Căn bậc hai

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài