Lý thuyết Số nguyên tố. Hợp số Toán 6 Cánh diều


Lý thuyết Số nguyên tố. Hợp số Toán 6 Cánh diều ngắn gọn, đầy đủ, dễ hiểu

 Số nguyên tố

- Số nguyên tố là số tự nhiên lớn hơn \(1,\) chỉ có \(2\) ước là \(1\)  và chính nó.

Ví dụ : Ư\((13) = \{ 13;1\} \) nên \(13\) là số nguyên tố.

Nhận xét:

* Cách kiểm tra 1 số là số nguyên tố: Để kết luận số a là số nguyên tố \(\left( {a > 1} \right),\)

Bước 1: Tìm số nguyên tố lớn nhất \(b\) mà \({b^2} < a\).

Bước 2: Lấy \(a\) chia cho các số nguyên tố từ 2 đến số nguyên tố \(b\), nếu \(a\) không chia hết cho số nào thì \(a\) là số nguyên tố.

Hợp số

Hợp số là số tự nhiên lớn hơn \(1,\) có nhiều hơn \(2\) ước.

Ví dụ: số \(15\) có \(4\) ước là \(1;3;5;15\) nên \(15\) là hợp số.

Lưu ý:

+) Số 0 và số 1 không là số nguyên tố cũng không là hợp số.

+) Kiểm tra một số là hợp số: Sử dụng dấu hiệu chia hết để tìm một ước khác 1 và chính nó.


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 10. Số nguyên tố. Hợp số