CHƯƠNG 1. PHƯƠNG TRÌNH VÀ HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn
Luyện tập chung trang 19
Bài 3. Giải bài toán bằng cách lập hệ phương trình
Bài tập cuối chương 1
CHƯƠNG 5. ĐƯỜNG TRÒN
Bài 13. Mở đầu về đường tròn
Bài 14. Cung và dây của một đường tròn
Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
Luyện tập chung trang 96
Bài 16. Vị trí tương đối của đường thẳng và đường tròn
Bài 17. Vị trí tương đối của hai đường tròn
Luyện tập chung trang 108
Bài tập cuối chương 5
CHƯƠNG 6. HÀM SỐ Y = AX^2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
Bài 18. Hàm số y = ax^2 (a khác 0)
Bài 19. Phương trình bậc hai một ẩn
Luyện tập chung trang 18
Bài 20. Định lí Viète và ứng dụng
Bài 21. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 28
Bài tập cuối chương 6
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Pha chế dung dịch theo nồng độ yêu cầu
Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm Geogebra
Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel
Gene trội trong các thế hệ lai
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Sử dụng công thức nghiệm để giải phương trình bậc hai Toán 9 có đáp án

Trắc nghiệm Sử dụng công thức nghiệm để giải phương trình bậc hai

13 câu hỏi
Trắc nghiệm
Câu 1 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta  = {b^2} - 4ac$. Phương trình đã cho vô nghiệm khi:

  • A.

    $\Delta  < 0$

  • B.

    $\Delta  = 0$

  • C.

    $\Delta  \ge 0$

  • D.

    $\Delta  \le 0$

Câu 2 :

Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta  = {b^2} - 4ac > 0$ . Khi đó phương trình có hai nghiệm là

  • A.

    ${x_1} = {x_2} =  - \dfrac{b}{{2a}}$

  • B.

    ${x_1} = \dfrac{{b + \sqrt \Delta  }}{{2a}};{x_2} = \dfrac{{b - \sqrt \Delta  }}{{2a}}$

  • C.

    ${x_1} = \dfrac{{ - b + \sqrt \Delta  }}{{2a}};{x_2} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}}$

  • D.

    ${x_1} = \dfrac{{ - b + \sqrt \Delta  }}{a};{x_2} = \dfrac{{ - b - \sqrt \Delta  }}{a}$

Câu 3 :

Tính biệt thức $\Delta $ từ đó tìm các nghiệm (nếu có ) của phương trình ${x^2} - 2\sqrt 2 x + 2 = 0$

  • A.

    $\Delta  = 0$ và phương trình có nghiệm kép ${x_1} = {x_2} = \sqrt 2 $.

  • B.

    $\Delta  < 0$ và phương trình vô nghiệm

  • C.

    $\Delta  = 0$ và phương trình có nghiệm kép ${x_1} = {x_2} =  - \sqrt 2 $.

  • D.

    $\Delta  > 0$ và phương trình có hai nghiệm phân biệt ${x_1} =  - \sqrt 2 ;{x_2} = \sqrt 2 $

Câu 4 :

Tìm điều kiện của tham số  $m$ để phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt .

  • A.

    $m \ge 0$

  • B.

    $m = 0$

  • C.

    $m > 0$

  • D.

    $m < 0$

Câu 5 :

Tìm các giá trị của tham số  $m$ để  phương trình \({x^2} + mx - m = 0\) có nghiệm kép.

  • A.

    $m = 0;m =  - 4$

  • B.

    $m = 0$

  • C.

    $m =  - 4$

  • D.

    $m = 0;m = 4$

Câu 6 :

Tìm điều kiện của tham số $m$ để phương trình \({x^2} + (1 - m)x - 3 = 0\) vô nghiệm

  • A.

    $m = 0$

  • B.

    Không tồn tại $m$

  • C.

    $m =  - 1$

  • D.

    $m = 1$

Câu 7 :

Cho phương trình ${x^2} - \left( {m - 1} \right)x - m = 0$. Kết luận nào sau đây là đúng?

  • A.

    Phương trình vô nghiệm với mọi $m$

  • B.

    Phương trình có nghiệm kép với mọi $m$

  • C.

    Phương trình hai nghiệm phân biệt  với mọi $m$

  • D.

    Phương trình có nghiệm  với mọi $m$

Câu 12 :

Giá trị của tham số \(m\) để phương trình \({x^2} + 2x - 3m = 0\;\) có hai nghiệm phân biệt.

  • A.

    \(m < \frac{1}{3}.\)

  • B.

    \(m > \frac{1}{3}.\)

  • C.

    \(m <  - \frac{1}{3}.\)

  • D.

    \(m >  - \frac{1}{3}.\)