CHƯƠNG 1. PHƯƠNG TRÌNH VÀ HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn
Luyện tập chung trang 19
Bài 3. Giải bài toán bằng cách lập hệ phương trình
Bài tập cuối chương 1
CHƯƠNG 5. ĐƯỜNG TRÒN
Bài 13. Mở đầu về đường tròn
Bài 14. Cung và dây của một đường tròn
Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
Luyện tập chung trang 96
Bài 16. Vị trí tương đối của đường thẳng và đường tròn
Bài 17. Vị trí tương đối của hai đường tròn
Luyện tập chung trang 108
Bài tập cuối chương 5
CHƯƠNG 6. HÀM SỐ Y = AX^2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
Bài 18. Hàm số y = ax^2 (a khác 0)
Bài 19. Phương trình bậc hai một ẩn
Luyện tập chung trang 18
Bài 20. Định lí Viète và ứng dụng
Bài 21. Giải bài toán bằng cách lập phương trình
Luyện tập chung trang 28
Bài tập cuối chương 6
HOẠT ĐỘNG THỰC HÀNH TRẢI NGHIỆM
Pha chế dung dịch theo nồng độ yêu cầu
Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra
Vẽ hình đơn giản với phần mềm Geogebra
Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel
Gene trội trong các thế hệ lai
BÀI TẬP ÔN TẬP CUỐI NĂM

Trắc nghiệm Bài tập Bài 16. Vị trí tương đối của đường thẳng và đường tròn Toán 9 có đáp án

Trắc nghiệm Bài tập Bài 16. Vị trí tương đối của đường thẳng và đường tròn

34 câu hỏi
Trắc nghiệm
Câu 1 :

Cho $\left( {O;5cm} \right)$. Đường thẳng $d$ là tiếp tuyến của đường tròn $\left( {O;5\,cm} \right)$, khi đó

  • A.

    Khoảng cách từ $O$ đến đường thẳng $d$ nhỏ hơn $5\,cm$                

  • B.

    Khoảng cách từ $O$ đến đường thẳng $d$ lớn hơn $5\,cm$

  • C.

    Khoảng cách từ $O$ đến đường thẳng $d$ bằng $5\,cm$

  • D.

    Khoảng cách từ $O$ đến đường thẳng $d$ bằng $6\,cm$

Câu 2 :

Cho tam giác $ABC$ có $AC = 3cm,AB = 4cm,BC = 5cm$. Vẽ đường tròn $\left( {C;CA} \right)$. Khẳng định nào sau đây là đúng?

  • A.

    Đường thẳng $BC$ cắt đường tròn $\left( {C;CA} \right)$ tại một điểm

  • B.

    $AB$ là cát tuyến của đường tròn $\left( {C;CA} \right)$

  • C.

    $AB$ là tiếp tuyến của $\left( {C;CA} \right)$           

  • D.

    $BC$ là tiếp tuyến của $\left( {C;CA} \right)$

Câu 3 :

Cho tam giác $ABC$ cân tại $A$; đường cao $AH$ và $BK$ cắt nhau tại $I$. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính $AI$.

  • A.

    $HK$

  • B.

    $IB$

  • C.

    $IC$

  • D.

    $AC$

Câu 4 :

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Đường tròn đường kính $BH$ cắt $AB$ tại $D$, đường tròn đường kính $CH$ cắt $AC$ tại $E$ . Chọn khẳng định sai trong các khẳng định sau

  • A.

    $DE$ là cắt đường tròn đường kính $BH$

  • B.

    $DE$ là tiếp tuyến của đường tròn đường kính $BH$

  • C.

    Tứ giác$AEHD$ là hình chữ nhật

  • D.

    $DE \bot DI$ (với $I$ là trung điểm $BH$)

Câu 9 :

Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$  trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :

 

$R$

$d$

Vị trí tương đối của đường thẳng và đường tròn

$5cm$

$\,4\,cm$

...............$\left( 1 \right)$...................

$8cm$

...$\left( 2 \right)$...

Tiếp xúc nhau

  • A.

    $\left( 1 \right)$ : cắt nhau ; $\left( 2 \right)$ : $8\,cm$

  • B.

    $\left( 1 \right)$ : $9\,cm$; $\left( 2 \right)$ : cắt nhau 

  • C.

    $\left( 1 \right)$ : không cắt  nhau ; $\left( 2 \right)$ : $8\,cm$

  • D.

    $\left( 1 \right)$ : cắt nhau ; $\left( 2 \right)$ : $6\,cm$

Câu 10 :

Trên mặt phẳng tọa độ $Oxy$, cho điểm $A\left( {4;5} \right)$. Hãy xác định vị trí tương đối của đường tròn $\left( {A;5} \right)$ và các trục tọa độ.

  • A.

    Trục tung cắt đường tròn và trục hoành tiếp xúc với đường tròn.

  • B.

    Trục hoành cắt đường tròn và trục tung tiếp xúc với đường tròn

  • C.

    Cả hai trục tọa độ đều cắt đường tròn

  • D.

    Cả hai trục tọa độ đều tiếp xúc với đường tròn.

Câu 11 :

Cho $a,b$ là hai đường thẳng song song và cách nhau một khoảng $2,5\,cm$. Lấy điểm $I$ trên $a$ và vẽ đường tròn $\left( {I;2,5cm} \right)$. Khi đó đường tròn với đường thẳng  $b$

  • A.

    cắt nhau

  • B.

    không cắt nhau

  • C.

    tiếp xúc

  • D.

    đáp án khác

Câu 12 :

Cho góc $\widehat {xOy}\,\left( {0 < \widehat {xOy} < 180^\circ } \right)$. Đường tròn $\left( I \right)$ là đường tròn tiếp xúc với cả hai cạnh $Ox;Oy$. Khi đó điểm $I$ chạy trên đường nào?

  • A.

    Đường thẳng vuông góc với $Ox$ tại $O$

  • B.

    Tia phân giác của góc $\widehat {xOy}$

  • C.

    Tia $Oz$ nằm giữa $Ox$ và $Oy$

  • D.

    Tia phân giác của góc $\widehat {xOy}$ trừ điểm $O$

Câu 13 :

Cho đường tròn tâm $O$ bán kính $3cm$ và một điểm $A$ cách $O$ là $5cm$. Kẻ tiếp tuyến $AB$ với đường tròn ( $B$ là tiếp điểm). Tính độ dài $AB$.

  • A.

    $AB = \,3\,cm$

  • B.

    $AB = \,4\,cm$

  • C.

    $AB = \,5\,cm$

  • D.

    $AB = \,2\,cm$

Câu 14 :

Cho đường tròn $\left( {O;R} \right)$ và dây $AB = 1,2R$. Vẽ một tiếp tuyến song song với $AB$, cắt các tia $OA,OB$ lần lượt tại $E$ và $F$. Tính diện tích tam giác $OEF$ theo $R$.

  • A.

    ${S_{OEF}} = 0,75{R^2}$

  • B.

    ${S_{OEF}} = 1,5{R^2}$

  • C.

    ${S_{OEF}} = 0,8{R^2}$    

  • D.

    ${S_{OEF}} = 1,75{R^2}$

Câu 15 :

Cho hai đường thẳng $a$ và $b$ song song với nhau, cách nhau một khoảng là $h$. Một đường tròn $\left( O \right)$ tiếp xúc với $a$ và $b$. Hỏi tâm $O$ di động trên đường nào?

  • A.

    Đường thẳng $c$ song song và cách đều $a,b$ một khoảng $\dfrac{h}{2}$.          

  • B.

    Đường thẳng $c$ song song và cách đều $a,b$ một khoảng $\dfrac{{2h}}{3}$.

  • C.

    Đường thẳng $c$ đi qua $O$ vuông góc với $a,b$ 

  • D.

    Đường tròn $\left( {A;AB} \right)$ với $A,B$ lần lượt là tiếp điểm của $a,b$ với $\left( O \right)$.

Câu 17 :

Hai tiếp tuyến tại $A$ và $B$ của đường tròn $(O)$ cắt nhau tại $I$ . Đường thẳng qua $I$ và vuông góc với $IA$ cắt $OB$ tại $K$. Chọn khẳng định đúng.

  • A.

    $OI = OK = KI$

  • B.

    $KI = KO$

  • C.

    $OI = OK$

  • D.

    $IO = IK$

Câu 18 :

Cho đường tròn $(O).$ Từ một điểm $M$ ở ngoài $(O)$, vẽ hai tiếp tuyến $MA$ và $MB$ sao cho góc $AMB$ bằng ${120^0}$. Biết chu vi tam giác $MAB$ là $6\left( {3 + 2\sqrt 3 } \right)cm$, tính độ dài dây $AB.$

  • A.

    $18\,cm$

  • B.

    $6\sqrt 3 cm$

  • C.

    $12\sqrt 3 \,cm$

  • D.

    $15\,cm$

Câu 20 :

Cho hai đường tròn  $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?

  • A.

    $AC = CB$

  • B.

    $\widehat {CBO'} = 90^\circ $

  • C.

    $CA,CB$ là hai tiếp tuyến của $\left( {O'} \right)$

  • D.

    $CA,CB$ là hai cát tuyến của $\left( {O'} \right)$

Câu 23 :

Cho đường tròn $\left( {O;3cm} \right)$, lấy điểm $A$ sao cho $OA = 6cm$. Từ \(A\) vẽ tiếp tuyến $AB,AC$ đến đường tròn $\left( O \right)$  ($B,C$ là tiếp điểm). Chu vi tam giác $ABC$ là

  • A.

    $9cm$                      

  • B.

    $9\sqrt 3 cm$                  

  • C.

    $9\sqrt 2 cm$                    

  • D.

    Kết quả khác

Câu 24 :

Hai tiếp tuyến tại $A$ và $B$ của đường tròn $\left( {O;R} \right)$  cắt nhau tại $M.$ Nếu $MA = \;R\sqrt 3 $ thì góc $\widehat {AOB}$ bằng:

  • A.

    ${120^0}\;$                              

  • B.

    ${90^0}$                          

  • C.

    ${60^0}$                      

  • D.

    ${45^0}$  

Câu 25 :

Cho tam giác $ABC$ có $AB = 5,AC = 12,BC = 13$. Khi đó:

  • A.

    $AB$ là tiếp tuyến của đường tròn $\left( {C;5} \right)$

  • B.

    $AC$ là tiếp tuyến của đường tròn $\left( {B;5} \right)$

  • C.

    $AB$ là tiếp tuyến của đường tròn $\left( {B;12} \right)$

  • D.

    $AC$ là tiếp tuyến của đường tròn $\left( {C;13} \right)$

Câu 26 :

Hai tiếp tuyến tại hai điểm $B,C$ của một đường tròn $\left( O \right)$ cắt nhau tại $A$ tạo thành \(\widehat {BAC} = {50^0}\). Số đo của góc \(\widehat {BOC}\)  bằng

  • A.

    ${30^0}$                                

  • B.

    ${40^0}$                              

  • C.

    ${130^0}$                             

  • D.

    ${310^0}$        

Câu 27 :

Cho hình vẽ, biết số đo cung \(BmD\) là \({120^0}.\) Khi đó

  • A.

    \(\widehat {OAB} = {75^0}\)

  • B.

    \(\widehat {OAB} = {60^0}\)

  • C.

    \(\widehat {OAB} = {45^0}\)

  • D.

    \(\widehat {OAB} = {30^0}\)

Câu 28 :

Cho nửa đường tròn (O ; R), AB là đường kính. Dây BC có độ dài R. Trên tia đối của tia CB lấy điểm D sao cho \(CD = 3R. \) Chọn câu đúng.

  • A.

    AD là tiếp tuyến của đường tròn.

  • B.

    \(\widehat {ACB} = 90^\circ \)

  • C.

    \(AD\) cắt đường tròn \(\left( {O;R} \right)\) tại hai điểm phân biệt

  • D.

    Cả A, B đều đúng.

Câu 29 :

Từ một điểm A ở bên ngoài đường tròn (O) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên AO lấy điểm M sao cho \(AM = AB.\) Các tia BM và CM lần lượt cắt đường tròn tại một điểm thứ hai là D và E. Chọn câu đúng.

  • A.

    M là tâm đường tròn ngoại tiếp tam giác OBC

  • B.

    DE là đường kính của đường tròn (O)

  • C.

    M là tâm đường tròn nội tiếp tam giác OBC

  • D.

    Cả A, B, C đều sai

Câu 30 :

Cho hai đường tròn \(\left( {O;4cm} \right)\) và \(\left( {O';3cm} \right)\) biết \(OO' = 5cm\). Hai đường tròn trên cắt nhau tại \(A\) và \(B\). Độ dài \(AB\) là:

  • A.
    \(2,4cm\)
  • B.
    \(4,8cm\)                          
  • C.

    \(\dfrac{5}{{12}}cm\)                           

  • D.
    \(5cm\)
Câu 31 :

Đường thẳng \(a\)  cách tâm \(O\)  của đường tròn \(\left( {O;R} \right)\)một khoảng bằng \(\sqrt 8 \,\,cm.\) Biết \(R = 3\,\,cm,\) số giao điểm của đường thẳng \(a\)  và đường tròn \(\left( {O;R} \right)\) là:

  • A.
    \(0\)                              
  • B.
    \(1\)                          
  • C.
    \(2\)
  • D.
    \(3\).
Câu 32 :

Hai tiếp tuyến tại hai điểm \(B,C\) của một đường tròn \(\left( O \right)\) cắt nhau tại \(A\) tạo thành \(\widehat {BAC} = {50^0}\). Số đo của góc \(\widehat {BOC}\)  chắn cung nhỏ \(BC\) bằng 

  • A.
    \({30^0}\)                                
  • B.
    \({40^0}\)                               
  • C.
    \({130^0}\)                             
  • D.
    \({310^0}\)        
Câu 33 :

Cho hai đường tròn \(\left( O \right)\)  và \(\left( {O'} \right)\)  tiếp xúc ngoài tại \(A\). Kẻ tiếp tuyến chung ngoài \(BC,B \in \left( O \right)\) và \(C \in (O')\). Tiếp tuyến chung trong tại \(A\) cắt tiếp tuyến chung ngoài \(BC\) tại \(I\). Tính độ dài \(BC\) biết \(OA = 9cm,O'A = 4cm\).

  • A.
    \(12cm\)                           
  • B.
    \(18cm\)                                
  • C.
    \(10cm\)                        
  • D.

    \(6cm\)

Câu 34 :

Khoảng cách từ điểm O đến đường thẳng a bằng 7cm. Khẳng định nào sau đây là sai?

  • A.

    Đường thẳng a tiếp xúc với đường tròn (O; 7cm).

  • B.

    Đường thẳng a cắt đường tròn (O; 5cm).

  • C.

    Đường thẳng a không giao với đường tròn (O; 5cm).

  • D.

    Đường thẳng a cắt đường tròn tâm (O; 8cm).