Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định đúng.
$\sin \alpha + \cos \alpha = 1$
${\sin ^2}\alpha + {\cos ^2}\alpha = 1$
${\sin ^3}\alpha + {\cos ^3}\alpha = 1$
$\sin \alpha - cos\alpha = 1$
Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định sai.
$\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}\,\,$
$\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }}\,\,$
$\tan \alpha .\cot \alpha = 1$
${\tan ^2}\alpha - 1 = {\cos ^2}\alpha $
Cho $\alpha $ là góc nhọn bất kỳ. Khi đó $C = {\sin ^4}\alpha + {\cos ^4}\alpha $ bằng
$C = 1 - 2{\sin ^2}\alpha .{\cos ^2}\alpha $
$C = 1$
$C = {\sin ^2}\alpha .{\cos ^2}\alpha $
$C = 1 + 2{\sin ^2}\alpha .{\cos ^2}\alpha $
Cho $\alpha $ là góc nhọn bất kỳ. Rút gọn $P = \left( {1 - {{\sin }^2}\alpha } \right).{\cot ^2}\alpha + 1 - {\cot ^2}\alpha $ ta được
$P = {\sin ^2}\alpha $
$P = {\cos ^2}\alpha $
$P = {\tan ^2}\alpha $
$P = 2{\sin ^2}\alpha $
Cho $\alpha $ là góc nhọn bất kỳ. Biểu thức $Q = \dfrac{{1 + {{\sin }^2}\alpha }}{{1 - {{\sin }^2}\alpha }}$ bằng
$Q = 1 + {\tan ^2}\alpha $
$Q = 1 + 2{\tan ^2}\alpha $
$Q = 1 - 2{\tan ^2}\alpha $
$Q = 2{\tan ^2}\alpha $
Cho $\tan \alpha = 2$. Tính giá trị của biểu thức $G = \dfrac{{2\sin \alpha + \cos \alpha }}{{\cos \alpha - 3\sin \alpha }}$
$G =1$
$G = - \dfrac{4}{5}$
$G = - \dfrac{6}{5}$
$G = - 1$
Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng
$2$
$3$
$1$
$4$
Tính giá trị biểu thức $B = \tan 1^\circ .\tan 2^\circ .\tan 3^\circ .....\tan88^\circ .\tan89^\circ $
$B = 44$
$B = 1$
$B = 45$
$B = 2$
Tính giá trị biểu thức \({\sin ^2}{10^ \circ } + {\sin ^2}{20^ \circ } + \,\,\,...\,\,\, + {\sin ^2}{70^ \circ } + {\sin ^2}{80^ \circ }\)
$0$
$8$
$5$
$4$
Tính giá trị biểu thức \(B = \tan 10^\circ .\tan 20^\circ .\tan 30^\circ .....tan80^\circ \)
\(B = 44\)
\(B = 1\)
\(B = 45\)
\(B = 2\)
Cho \(\alpha \) là góc nhọn bất kỳ. Khi đó \(C={\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha {\cos ^2}\alpha \) bằng
\(C = 1 - 3{\sin ^2}\alpha .{\cos ^2}\alpha \)
$C=1$
\(C = {\sin ^2}\alpha .{\cos ^2}\alpha \)
\(C = 3{\sin ^2}\alpha .{\cos ^2}\alpha - 1\)
Cho \(\alpha \) là góc nhọn bất kỳ. Cho \(P = \left( {1 - {{\sin }^2}\alpha } \right).{\tan ^2}\alpha + \left( {1 - {{\cos }^2}\alpha } \right){\cot ^2}\alpha \), chọn kết luận đúng.
\(P > 1\)
\(P < 1\)
\(P = 1\)
\(P = 2{\sin ^2}\alpha \)
Cho \(\alpha \) là góc nhọn bất kỳ. Biểu thức \(Q = \dfrac{{{{\cos }^2}\alpha - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\) bằng
\(Q = \cot \alpha - \tan \alpha \)
\(Q = \cot \alpha + \tan \alpha \)
\(Q = \tan \alpha - \cot \alpha \)
\(Q = 2\tan \alpha \)
Cho \(\tan \alpha = 4\). Tính giá trị của biểu thức \(P = \dfrac{{3\sin \alpha - 5\cos \alpha }}{{4\cos \alpha + \sin \alpha }}\)
\(P = \dfrac{7}{8}\)
\(P = \dfrac{{17}}{8}\)
\(P = \dfrac{8}{7}\)
\(P = \dfrac{5}{8}\)
Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 3:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng
$3$
$5$
\(\dfrac{3}{5}\)
\(\dfrac{5}{3}\)
Chọn kết luận đúng về giá trị biểu thức \(B = \dfrac{{{{\cos }^2}\alpha - 3{{\sin }^2}\alpha }}{{3 - {{\sin }^2}\alpha }}\) biết \(\tan \alpha = 3.\)
\(B > 0\)
\(B < 0\)
\(0 < B < 1\)
\(B = 1\)
Giá trị của biểu thức \(P = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\cos ^2}{50^0} + {\cos ^2}{70^0}\) bằng
Cho \(\alpha = 35^\circ ;\beta = 55^\circ \). Khẳng định nào sau đây là sai?
\(\sin \alpha = \sin \beta \).
\(\sin \alpha = \cos \beta \).
\(\tan \alpha = \cot \beta \).
\(\cos \alpha = \sin \beta \).
Tính \(\sin 40^\circ - \cos 50^\circ \).
\( - 1\).
\(0\).
\(1\).
\(2\).
Tỉ số lượng giác nào sau đây bằng \(\sin 40^\circ \)?
\(\sin 50^\circ \).
\(\cos 50^\circ \).
\(\tan 50^\circ \).
\(\cot 50^\circ \).
Cho tam giác ABC vuông tại A. Khẳng định nào sau đây là đúng?
\(\sin B + \cos C = 0\).
\(\sin B - \cot B = 0\).
\(\tan B - \cot C = 0\).
\(\tan B + \cot C = 0\).
Giá trị của biểu thức \(A = \tan 45^\circ .\sin 60^\circ .\cot 30^\circ \) là
\(\frac{{\sqrt 3 }}{3}\).
\(\frac{{\sqrt 6 }}{2}\).
\(\frac{{\sqrt 3 }}{2}\).
\(\frac{3}{2}\).
Với góc nhọn \(\alpha \), ta có:
\({\rm{cos}}\left( {90^\circ - \alpha } \right) = \cot \alpha \).
\(\sin \left( {90^\circ - \alpha } \right) = \tan \alpha \).
\(\sin \left( {90^\circ - \alpha } \right) = \cot \alpha \).
\(\sin \left( {90^\circ - \alpha } \right) = \cos \alpha \).
Chọn đáp án đúng:
\(\cot 37^\circ = \cot 53^\circ \).
\(\cos 37^\circ = \sin 53^\circ \).
\(\tan 37^\circ = \cos 37^\circ \).
\(\sin 37^\circ = \sin 53^\circ \).