Bài 4.32 trang 207 SBT giải tích 12


Giải bài 4.32 trang 207 sách bài tập giải tích 12. Giải phương trình: ...

Đề bài

Giải phương trình: \({(z - i)^2} + 4 = 0\) trên tập số phức.

(Đề thi tốt nghiệp THPT năm 2011)

Phương pháp giải - Xem chi tiết

Phân tích vế trái thành tích rồi giải phương trình.

Lời giải chi tiết

Ta có: \({(z - i)^2} + 4 = 0\)\( \Leftrightarrow {\left( {z - i} \right)^2} - 4{i^2} = 0\) \( \Leftrightarrow {\left( {z - i} \right)^2} - {\left( {2i} \right)^2} = 0\) \( \Leftrightarrow \left( {z - i + 2i} \right)\left( {z - i - 2i} \right) = 0\) \( \Leftrightarrow \left( {z + i} \right)\left( {z - 3i} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\z - 3i = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z =  - i\\z = 3i\end{array} \right.\)

Vậy phương trình có nghiệm \({z_1} =  - i,{z_2} = 3i\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài