Bài 4.30 trang 207 SBT giải tích 12


Giải bài 4.30 trang 207 sách bài tập giải tích 12. Lập phương trình bậc hai có nghiệm là:...

Đề bài

Lập phương trình bậc hai có nghiệm là:

a) \(1 + i\sqrt 2 \) và \(1 - i\sqrt 2 \)

b) \(\sqrt 3  + 2i\) và \(\sqrt 3  - 2i\)

c) \( - \sqrt 3  + i\sqrt 2 \) và \( - \sqrt 3  - i\sqrt 2 \)

Phương pháp giải - Xem chi tiết

Tính \({z_1} + {z_2},{z_1}.{z_2}\) và suy ra phương trình cần tìm, dựa vào chú ý:

Nếu \(S = {z_1} + {z_2}\) và \(P = {z_1}{z_2}\) thì \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} - Sz + P = 0\).

Lời giải chi tiết

a) Đặt \({z_1} = 1 + i\sqrt 2 ,{z_2} = 1 - i\sqrt 2 \) thì:

\(\begin{array}{l}
{z_1} + {z_2} = 1 + i\sqrt 2 + 1 - i\sqrt 2 = 2\\
{z_1}{z_2} = \left( {1 + i\sqrt 2 } \right)\left( {1 - i\sqrt 2 } \right)\\
= {1^2} - {\left( {i\sqrt 2 } \right)^2} = 1 + 2 = 3
\end{array}\)

Vậy \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} - 2z + 3 = 0\).

b) Đặt \({z_1} = \sqrt 3  + 2i\) và \({z_2} = \sqrt 3  - 2i\) thì

\(\begin{array}{l}
{z_1} + {z_2} = \sqrt 3 + 2i + \sqrt 3 - 2i = 2\sqrt 3 \\
{z_1}{z_2} = \left( {\sqrt 3 + 2i} \right)\left( {\sqrt 3 - 2i} \right)\\
= {\left( {\sqrt 3 } \right)^2} - {\left( {2i} \right)^2} = 3 + 4 = 7
\end{array}\)

Vậy \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} - 2\sqrt 3 z + 7 = 0\).

c) Đặt \({z_1} =  - \sqrt 3  + i\sqrt 2 \) và \({z_2} =  - \sqrt 3  - i\sqrt 2 \) thì

\(\begin{array}{l}
{z_1} + {z_2} = - \sqrt 3 - i\sqrt 2 - \sqrt 3 + i\sqrt 2 = - 2\sqrt 3 \\
{z_1}{z_2} = \left( { - \sqrt 3 - i\sqrt 2 } \right)\left( { - \sqrt 3 + i\sqrt 2 } \right)\\
= {\left( { - \sqrt 3 } \right)^2} - {\left( {i\sqrt 2 } \right)^2} = 3 + 2 = 5
\end{array}\)

Vậy \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} + 2\sqrt 3 z + 5 = 0\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài