Bài 43 trang 84 Vở bài tập toán 8 tập 1


Giải bài 43 trang 84 VBT toán 8 tập 1. Thực hiện các phép tính sau...

Đề bài

Thực hiện các phép tính sau:

\(\displaystyle  a)\,\,\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right)\)\(\displaystyle :{{4x} \over {10x + 5}} \) 
\(\displaystyle b)\,\,\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right)\)\(\displaystyle :\left( {{1 \over x} + x - 2} \right) \)
\(\displaystyle c){\rm{ }}{1 \over {x - 1}} \)\(\displaystyle - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right).  \) 

Phương pháp giải - Xem chi tiết

Áp dụng:

- Các quy tắc cộng, trừ, nhân, chia phân thức đại số. 

- Chú ý đến thứ tự thực hiện các phép tính: Thực hiện trong ngoặc trước ngoài ngoặc sau, nhân chia trước cộng trừ sau.

Lời giải chi tiết

\(\displaystyle a)\,\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right)\)\(\displaystyle :{{4x} \over {10x - 5}} \) 
\(\displaystyle = {{{{\left( {2x + 1} \right)}^2} - {{\left( {2x - 1} \right)}^2}} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{10x - 5} \over {4x}} \) 
\(\displaystyle = {{4{x^2} + 4x + 1 - 4{x^2} + 4x - 1} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}\)\(\displaystyle .{{5\left( {2x - 1} \right)} \over {4x}} \) 
\(\displaystyle = {{8x.5\left( {2x - 1} \right)} \over {\left( {2x - 1} \right)\left( {2x + 1} \right).4x}}\)\(\displaystyle = {{10} \over {2x + 1}} \)

Chú ý: Ở câu a) đề và lời giải trong vở bài tập không thống nhất về đề bài.

Nếu đề bài là: \(\displaystyle \left( {\dfrac{{2x + 1}}{{2x - 1}} - \dfrac{{2x - 1}}{{2x + 1}}} \right)\)\(\displaystyle :\dfrac{{4x}}{{10x + 5}}\) thì ta giải như sau:

\(\displaystyle \,\,\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right)\)\(\displaystyle :{{4x} \over {10x + 5}} \)
\(\displaystyle = {{{{\left( {2x + 1} \right)}^2} - {{\left( {2x - 1} \right)}^2}} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}\)\(\displaystyle .{{10x + 5} \over {4x}} \)
\(\displaystyle = {{4{x^2} + 4x + 1 - 4{x^2} + 4x - 1} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}\)\(\displaystyle .{{5\left( {2x + 1} \right)} \over {4x}} \)
\(\displaystyle = {{8x.5\left( {2x + 1} \right)} \over {\left( {2x - 1} \right)\left( {2x + 1} \right).4x}}\)\(\displaystyle = {{10} \over {2x - 1}}  \) 

\(\displaystyle  b)\,\,\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right)\)\(\displaystyle :\left( {{1 \over x} + x - 2} \right) \) 
\(\displaystyle = \left[ {{1 \over {x\left( {x + 1} \right)}} + {{x - 2} \over {x + 1}}} \right]\)\(\displaystyle :{{1 + {x^2} - 2x} \over x} \) 
\(\displaystyle = {{1 + x\left( {x - 2} \right)} \over {x\left( {x + 1} \right)}}\)\(\displaystyle .{x \over {{x^2} - 2x + 1}} \) 
\(\displaystyle = {{\left( {{x^2} - 2x + 1} \right)x} \over {x\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)}} \)\(\displaystyle = {1 \over {x + 1}} \)

c) Chú ý đến thứ tự thực hiện các phép tính, ta có:

\(\displaystyle  {1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}\)\(\displaystyle .\left( {{1 \over {{x^2} - 2x + 1}} - {1 \over {{x^2} - 1}}} \right) \) 
\(\displaystyle = {1 \over {x - 1}} - {{x\left( {{x^2} - 1} \right)} \over {{x^2} + 1}}\)\(\displaystyle .\left[ {{1 \over {{{\left( {x - 1} \right)}^2}}} - {1 \over {\left( {x - 1} \right)\left( {x + 1} \right)}}} \right] \) 
\(\displaystyle = {1 \over {x - 1}} \)\(\displaystyle - {{x\left( {x - 1} \right)\left( {x + 1} \right)} \over {{x^2} + 1}}.{{x + 1 - \left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2}.\left( {x + 1} \right)}} \) 
\(\displaystyle = {1 \over {x - 1}}\)\(\displaystyle - {{x\left( {x - 1} \right)\left( {x + 1} \right)} \over {{x^2} + 1}}.{2 \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} \) 
\(\displaystyle = {1 \over {x - 1}} - {{2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} \)\(\displaystyle = {{{x^2} + 1 - 2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} \)
\(\displaystyle = {{{{\left( {x - 1} \right)}^2}} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} \)\(\displaystyle = {{x - 1} \over {{x^2} + 1}}{\rm{ }} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài