Bài 33 trang 163 Vở bài tập toán 8 tập 1


Đề bài

Cho tam giác \(ABC.\) Gọi \(M, N\) là các trung điểm tương ứng của \(AC, BC.\) Chứng minh rằng diện tích của hình thang \(ABNM\) bằng \(\dfrac{3}{4}\) diện tích của tam giác \(ABC.\)

Phương pháp giải - Xem chi tiết

Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó. 

$$S = {1 \over 2}ah$$

Lời giải chi tiết

\({S_{CMN}} = \dfrac{1}{2}{S_{CAN}}\) (vì \(CM = \dfrac{1}{2}CA,\) chung chiều cao kẻ từ \(N\) đến \(CA\)).

\({S_{CAN}} = \dfrac{1}{2}{S_{ABC}}\) (vì \(CN = \dfrac{1}{2}CB,\) chung chiều cao kẻ từ \(A\) đến \(CB\)).

Suy ra \({S_{CMN}} = \dfrac{1}{4}{S_{ABC}}\).

Do đó \({S_{ABNM}} = {S_{ABC}} - {S_{CMN}} \)\(\,= {S_{ABC}} - \dfrac{1}{4}{S_{ABC}} = \dfrac{3}{4}{S_{ABC}}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.