Bài 30 trang 161 Vở bài tập toán 8 tập 1


Đề bài

Cho hình vuông \(ABCD\) có tâm đối xứng \(O\), cạnh \(a.\) Một góc vuông \(xOy\) có tia \(Ox\) cắt cạnh \(AB\) tại \(E\), tia \(Oy\) cắt cạnh \(BC\) tại \(F\) (h.\(115\))

Tính diện tích tứ giác \(OEBF.\)

Phương pháp giải - Xem chi tiết

Áp dụng tính chất hình vuông, công thức tính diện tích hình vuông; diện tích tam giác vuông, tam giác thường.

Diện tích hình vuông cạnh \(a\) bằng \(a^2\)

Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông

Diện tích tam giác bằng nửa tích cạnh đáy và chiều cao tương ứng.

Lời giải chi tiết

\(O\) là giao điểm hai đường chéo của hình vuông \(ABCD\) 

nên \(\widehat {AOB} = 90^o\) và \(OA=OB\).

\(\Delta AOE\) và \(\Delta BOF\) có:

\(\widehat {EAO} = \widehat {FBO} \) (vì \(ABCD\) là hình vuông)

\(OA = OB\) (chứng minh trên)

\(\widehat {AOE} = \widehat {BOF}\) (cùng phụ với \(\widehat {BOE}\))

Do đó \( ∆AOE = ∆BOF\, (g.c.g) \), suy ra \({S_{AOE}} = {S_{BOF}}\)

Cùng cộng với \({S_{EOB}}\) ta được \({S_{AOB}}={S_{OEBF}} \)   (1)

Ta lại có \({S_{AOB}}=\dfrac{1}{4}{S_{ABCD}}= \dfrac{1}{4}{a^2}\)   (2)

Từ (1) và (2) suy ra \({S_{OEBF}}  = \dfrac{1}{4}{a^2}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.