Bài 2.18 trang 109 SBT giải tích 12


Giải bài 2.18 trang 109 sách bài tập giải tích 12. Tìm khẳng định đúng trong các khẳng định sau:...

Đề bài

Tìm khẳng định đúng trong các khẳng định sau:

A. \(\displaystyle{\log _3}\frac{6}{5} < {\log _3}\frac{5}{6}\)

B. \(\displaystyle{\log _{\frac{1}{3}}}17 > {\log _{\frac{1}{3}}}9\)

C. \(\displaystyle{\log _{\frac{1}{2}}}e < {\log _{\frac{1}{2}}}\pi \)

D. \(\displaystyle{\log _2}\frac{{\sqrt 5 }}{2} > {\log _2}\frac{{\sqrt 3 }}{2}\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất so sánh logarit:

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle{\log _a}m < {\log _a}n \Leftrightarrow m > n\).

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle{\log _a}m < {\log _a}n \Leftrightarrow m < n\).

Lời giải chi tiết

Đáp án A: Vì \(\displaystyle 3 > 1\) và \(\displaystyle\frac{6}{5} > \frac{5}{6}\) nên \(\displaystyle{\log _3}\frac{6}{5} > {\log _3}\frac{5}{6}\) hay A sai.

Đáp án B: Vì \(\displaystyle 0 < \frac{1}{3} < 1\) và \(\displaystyle 17 > 9\) nên \(\displaystyle{\log _{\frac{1}{3}}}17 < {\log _{\frac{1}{3}}}9\) hay B sai.

Đáp án C: Vì \(\displaystyle 0 < \frac{1}{2} < 1\) và \(\displaystyle e < \pi \) nên \(\displaystyle{\log _{\frac{1}{2}}}e > {\log _{\frac{1}{2}}}\pi \) hay C sai.

Đáp án D: Vì \(\displaystyle 2 > 1\) và \(\displaystyle\frac{{\sqrt 5 }}{2} > \frac{{\sqrt 3 }}{2}\) nên \(\displaystyle{\log _2}\frac{{\sqrt 5 }}{2} > {\log _2}\frac{{\sqrt 3 }}{2}\) hay D đúng.

Chọn D.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Logarit

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài