Bài 2.15 trang 109 SBT giải tích 12


Giải bài 2.15 trang 109 sách bài tập giải tích 12. Tính:...

Lựa chọn câu để xem lời giải nhanh hơn

Tính:

LG a

\(\displaystyle\frac{1}{2}{\log _7}36 - {\log _7}14 - 3{\log _7}\sqrt[3]{{21}}\)

Phương pháp giải:

Sử dụng các tính chất của logarit.

Lời giải chi tiết:

\(\displaystyle\frac{1}{2}{\log _7}36 - {\log _7}14 - 3{\log _7}\sqrt[3]{{21}}\)

\( = {\log _7}{36^{\frac{1}{2}}} - {\log _7}14 - {\log _7}\left[ {{{\left( {\sqrt[3]{{21}}} \right)}^3}} \right]\)

\(\displaystyle ={\log _7}\sqrt {36}  - {\log _7}14 - {\log _7}21\)\(\displaystyle = {\log _7}6 - {\log _7}14 - {\log _7}21\) \(\displaystyle = {\log _7}\left( {\frac{6}{{14}}:21} \right)\)

\(\displaystyle = {\log _7}\frac{1}{{49}} = {\log _7}\left( {{7^{ - 2}}} \right) =  - 2\)

LG b

\(\displaystyle\frac{{{{\log }_2}24 - \frac{1}{2}{{\log }_2}72}}{{{{\log }_3}18 - \frac{1}{3}{{\log }_3}72}}\)

Phương pháp giải:

Sử dụng các tính chất của logarit.

Lời giải chi tiết:

\(\displaystyle\frac{{{{\log }_2}24 - \frac{1}{2}{{\log }_2}72}}{{{{\log }_3}18 - \frac{1}{3}{{\log }_3}72}}\)

=\(\displaystyle\frac{{{{\log }_2}24 - {{\log }_2}\sqrt {72} }}{{{{\log }_3}18 - {{\log }_3}\sqrt[3]{{72}}}}\)\(\displaystyle = \frac{{{{\log }_2}\frac{{24}}{{\sqrt {72} }}}}{{{{\log }_3}\frac{{18}}{{\sqrt[3]{{72}}}}}} = \frac{{{{\log }_2}\frac{{24}}{{6\sqrt 2 }}}}{{{{\log }_3}\frac{9}{{\sqrt[3]{9}}}}}\) \(\displaystyle = \frac{{{{\log }_2}\left( {2\sqrt 2 } \right)}}{{{{\log }_3}{{\left( {\sqrt[3]{9}} \right)}^2}}} = \frac{{{{\log }_2}{2^{\frac{3}{2}}}}}{{{{\log }_3}{3^{\frac{4}{3}}}}}\) \(\displaystyle = \frac{3}{2}:\frac{4}{3} = \frac{9}{8}\)

LG c

\(\displaystyle\frac{{{{\log }_2}4 + {{\log }_2}\sqrt {10} }}{{{{\log }_2}20 + 3{{\log }_2}2}}\)

Phương pháp giải:

Sử dụng các tính chất của logarit.

Lời giải chi tiết:

\(\displaystyle\frac{{{{\log }_2}4 + {{\log }_2}\sqrt {10} }}{{{{\log }_2}20 + 3{{\log }_2}2}}\)\(\displaystyle = \frac{{{{\log }_2}{2^2} + {{\log }_2}\left( {{2^{\frac{1}{2}}}{{.5}^{\frac{1}{2}}}} \right)}}{{{{\log }_2}\left( {{2^2}.5} \right) + 3}}\)

\( = \frac{{2{{{\log }_2}2} + {{\log }_2}{2^{\frac{1}{2}}} + {{\log }_2}{5^{\frac{1}{2}}}}}{{{{\log }_2}{2^2} + {{\log }_2}5 + 3}}\)

\(\displaystyle = \frac{{2 + \frac{1}{2} + \frac{1}{2}{{\log }_2}5}}{{2 + 3 + {{\log }_2}5}}\) \(\displaystyle = \frac{{\frac{5}{2} + \frac{1}{2}{{\log }_2}5}}{{5 + {{\log }_2}5}} = \frac{1}{2}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Logarit

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài