Bài 21 trang 66 Vở bài tập toán 8 tập 1


Giải bài 21 trang 66 VBT toán 8 tập 1. Làm tính cộng các phân thức sau...

Lựa chọn câu để xem lời giải nhanh hơn

Làm tính cộng các phân thức sau:

LG a

\(\dfrac{5}{{2{x^2}y}} + \dfrac{3}{{5x{y^2}}} + \dfrac{x}{{{y^3}}}\) 

Phương pháp giải:

Áp dụng

- Quy tắc đổi dấu 

\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)

- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)

Giải chi tiết:

\(\eqalign{ 
& a)\,\,MTC = 10{x^2}{y^3} \cr 
& {5 \over {2{x^2}y}} + {3 \over {5x{y^2}}} + {x \over {{y^3}}} \cr 
&  = {{5.5{y^2} + 3.2xy + x.10{x^2}} \over {10{x^2}{y^3}}} \cr 
& = {{25{y^2} + 6xy + 10{x^3}} \over {10{x^2}{y^3}}} \cr} \)

LG b

 \(\dfrac{{x + 1}}{{2x + 6}} + \dfrac{{2x + 3}}{{x\left( {x + 3} \right)}}\) 

Phương pháp giải:

Áp dụng

- Quy tắc đổi dấu 

\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)

- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)

Giải chi tiết:

Thực hiện tương tự như các bài tập trên.

Ta có: \(2x+6=2(x+3)\)     

MTC \(=2x(x+3)\) 

\(\eqalign{
& {{x + 1} \over {2x + 6}} + {{2x + 3} \over {x\left( {x + 3} \right)}} \cr 
& = {{x\left( {x + 1} \right) + 2\left( {2x + 3} \right)} \over {2x\left( {x + 3} \right)}} \cr 
& = {{{x^2} + x + 4x + 6} \over {2x\left( {x + 3} \right)}} \cr 
& = {{{x^2} + 5x + 6} \over {2x\left( {x + 3} \right)}} \cr 
& = {{{x^2} + 2x + 3x + 6} \over {2x\left( {x + 3} \right)}} \cr 
& = {{x\left( {x + 2} \right) + 3\left( {x + 2} \right)} \over {2x\left( {x + 3} \right)}} \cr 
& = {{\left( {x + 2} \right)\left( {x + 3} \right)} \over {2x\left( {x + 3} \right)}} = {{x + 2} \over {2x}} \cr} \)

LG c

\(\dfrac{{3x + 5}}{{{x^2} - 5x}} + \dfrac{{25 - x}}{{25 - 5x}}\) 

Phương pháp giải:

Áp dụng

- Quy tắc đổi dấu 

\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)

- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)

Giải chi tiết:

(Đổi dấu ở mỗi hạng tử để dễ quy đồng mẫu thức)

+) Tìm MTC:

\(\eqalign{
& {x^2} - 5x = x\left( {x - 5} \right) \cr 
& 25 - 5x = 5\left( {5 - x} \right) = - 5\left( {x - 5} \right) \cr} \)

MTC \(=5x\left( {x - 5} \right)\)

+) Thực hiện phép tính:

\(\eqalign{
& {{3x + 5} \over {{x^2} - 5x}} + {{25 - x} \over {25 - 5x}} \cr 
& = {{3x + 5} \over {{x^2} - 5x}} + {{ - \left( {25 - x} \right)} \over { - \left( {25 - 5x} \right)}}\cr& = {{3x + 5} \over {{x^2} - 5x}} + {{x - 25} \over {5x - 25}} \cr 
& = {{3x + 5} \over {x\left( {x - 5} \right)}} + {{x - 25} \over {5\left( {x - 5} \right)}} \cr 
&  = {{5\left( {3x + 5} \right) + x\left( {x - 25} \right)} \over {5x\left( {x - 5} \right)}}\cr 
& = {{15x + 25 + {x^2} - 25x} \over {5x\left( {x - 5} \right)}} \cr 
& = {{{x^2} - 10x + 25} \over {5x\left( {x - 5} \right)}} \cr 
& = {{{{\left( {x - 5} \right)}^2}} \over {5x\left( {x - 5} \right)}} = {{x - 5} \over {5x}} \cr} \) 

Giải thích:

\({x^2} - 10x + 25 = {x^2} - 2.x.5 + {5^2}\)\( = {\left( {x - 5} \right)^2}\)

LG d

\({x^2} + \dfrac{{{x^4} + 1}}{{1 - {x^2}}} + 1\) 

Phương pháp giải:

Áp dụng

- Quy tắc đổi dấu

\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\) 

- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)

Giải chi tiết:

MTC \(= 1 - {x^2}\)

Nhờ tính chất giao hoán của phép cộng có thể viết

\(\eqalign{ 
&  {x^2} + {{{x^4} + 1} \over {1 - {x^2}}} + 1= 1 + {{\rm{x}}^2} + {{{x^4} + 1} \over {1 - {x^2}}} \cr 
& = {{\left( {1 + {x^2}} \right)\left( {1 - {x^2}} \right)} \over {1 - {x^2}}} + {{{x^4} + 1} \over {1 - {x^2}}}  \cr 
& = {{1 - {x^4} + {x^4} + 1} \over {1 - {x^2}}} = {2 \over {1 - {x^2}}} \cr} \)

LG e

\(\dfrac{{4{x^2} - 3x + 17}}{{{x^3} - 1}} + \dfrac{{2x - 1}}{{{x^2} + x + 1}} \)\(+ \dfrac{6}{{1 - x}}\) 

Phương pháp giải:

Áp dụng

- Quy tắc đổi dấu 

\(\dfrac{A}{B} = \dfrac{{ - A}}{{ - B}}\)

- Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}=\dfrac{AD+BC}{BD}\)

Giải chi tiết:

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài