Đề số 7 - Đề kiểm tra học kì 2 (Đề thi học kì 2) - Toán 12

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề số 7 - Đề kiểm tra học kì 2 (Đề thi học kì 2) - Toán học 12

Đề bài

Câu 1:Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện \(\left| {z - (3 + 2i)} \right| = 2\) là:

A. Đường tròn tâm I(3;2), bán kính R = 2.

B. Đường tròn tâm I(-3;2), bán kính R = 2.

C. Đường tròn tâm I(3;2), bán kính \(R = \sqrt 2 .\)

D. Đường tròn tâm I(3;-2), bán kính R – 2.

Câu 2: Cho \({\rm{w}} = \dfrac{{{z^2} - {{\left( {\overline z } \right)}^2}}}{{1 + z.\overline z }}\)với z là số phức tùy ý cho trước. Mệnh đề nào dưới đây đúng?

A. w là số ảo.                  B. w = -1.

C. w = 1.                         D. w là số thực.

Câu 3: Gọi \({z_1},{z_2},{z_3},{z_4}\) là các nghiệm phức của phương trình \({({z^2} + z)^2} + 4({z^2} + z) - 12 = 0.\) Tính \(S = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} + {\left| {{z_3}} \right|^2} + {\left| {{z_4}} \right|^2}.\)

A. S = 18.                        B. S = 16.

C. S = 17.                        D. S = 15.

Câu 4: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 - t\\y = 3\\z =  - 1 + 2t\end{array} \right.,\) vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng d?

A.\(\overrightarrow {{u_4}}  = ( - 1;3;2).\)

B.\(\overrightarrow {{u_1}}  = (1;0; - 2).\)

C.\(\overrightarrow {{u_2}}  = (1;3; - 1).\)

D.\(\overrightarrow {{u_3}}  = (1;0;2).\)

Câu 5: Cho số phức z = 3 + 4i, \((a,b \in \mathbb{R}).\) Mệnh đề nào dưới đây là sai?

A.z là số thực.

B.\(\overline z  = 3 - 4i.\)

C. Phần ảo của số phức z bằng 4.

D.\(\left| z \right| = 5.\)

Câu 6: Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;-2;-2), B(3;2;0). Phương trình mặt cầu đường kính AB là:

A.\({(x - 3)^2} + {y^2} + {(z + 1)^2} = 20.\)

B.\({(x - 3)^2} + {y^2} + {(z + 1)^2} = 5.\)

C.\({(x + 3)^2} + {y^2} + {(z - 1)^2} = 5.\)

D.\({(x + 3)^2} + {y^2} + {(z - 1)^2} = 20.\)

Câu 7: Cửa lớn của một trung tâm giải trí có dạng Parabol (như hình vẽ). Người ta dự định lắp cửa kính cường lực 12 ly với đơn giá 800.000 đồng/\({m^2}.\) Tính chi phú để lắp cửa.

 

A. 9.600.000 đồng.         B. 19.200.000 đồng.

C. 33.600.000 đồng.       D. 7.200.000 đồng.

Câu 8: Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;-1;1) và hai mặt phẳng (P): 2x – z + 1 = 0; (Q): y – 2 = 0. Viết phương trình mặt phẳng \((\alpha )\) đi qua A và vuông góc với hai mặt phẳng (P), (Q).

A.\((\alpha ):2x - y + z - 4 = 0.\)                          

B.\((\alpha ):x + 2z - 4 = 0.\)

C.\((\alpha ):2x + y - 4 = 0.\)

D.\((\alpha ):x + y + z = 0.\)

Câu 9: Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1), B(-1;-2;0), C(2;0;-1). Tập hợp các điểm M cách đều ba điểm A, B, C là đường thẳng \(\Delta .\) Viết phương trình \(\Delta .\)

A.\(\Delta :\left\{ \begin{array}{l}x = \dfrac{1}{3} + t\\y = \dfrac{2}{3} + t\\z = t\end{array} \right.\)

B.\(\Delta :\left\{ \begin{array}{l}x = \dfrac{1}{3} + t\\y =  - \dfrac{2}{3} - t\\z = t\end{array} \right.\)

C.\(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y =  - \dfrac{3}{2} + t\\z = t\end{array} \right.\)

D.\(\Delta :\left\{ \begin{array}{l}x = \dfrac{1}{2} + t\\y =  - 1 - t\\z =  - \dfrac{1}{2} + t\end{array} \right.\)

Câu 10: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): \(\dfrac{x}{2} + \dfrac{y}{1} + \dfrac{z}{3} = 1,\) vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?

A.\(\overrightarrow {{n_1}}  = (3;6;2).\)           

B.\(\overrightarrow {{n_3}}  = ( - 3;6;2).\)

C.\(\overrightarrow {{n_2}}  = (3;6;2).\)           

D. \(\overrightarrow {{n_4}}  = ( - 3;6; - 2).\)

Câu 11: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng \((\alpha )\) chứa trục Ox và đi qua điểm M(2;-1;3).

A.\((\alpha ): - y + 3z = 0.\)

B.\((\alpha ):2x - z + 1 = 0.\)

C.\((\alpha ):x + 2y + z - 3 = 0.\)

D.\((\alpha ):3y + z = 0.\)

Câu 12: Hàm số f(x) nào dưới đây thỏa mãn \(\int {f(x)dx = \ln \left| {x + 3} \right|}  + C?\)

A.\(f(x) = (x + 3)\ln (x + 3) - x.\)

B.\(f(x) = \dfrac{1}{{x + 3}}.\)

C.\(f(x) = \dfrac{1}{{x + 2}}.\)

D.\(f(x) = \ln (ln(x + 3)).\)

Câu 13: Cho hình phẳng (H) giới hạn bởi đường cong \({y^2} - y + x = 0\) và đường thẳng x + y – 2 = 0. Tính diện tích S của hình (H).

A. S = 6.                          B. S = 14.

C.\(S = \dfrac{{17}}{6}.\)                      D.\(S = \dfrac{1}{6}.\)

Câu 14: Cho số phức z = a + bi \((a,b \in \mathbb{R})\) thỏa mãn \((1 + i)z - \dfrac{{3 + 4i}}{{2 - i}} = {(1 - i)^2}.\) Tính P = 10a + 10b.

A. P = - 42.                      B. P = 20.

C. P = 4.                          D. P = 2.

Câu 15: Tìm phần thực a của số phức \(z = {i^2} + ... + {i^{2019}}.\)

A. a = 1.           B.\(a =  - {2^{1009}}.\)

C.\(a = {2^{1009}}.\)      D. a = -1.

Câu 16: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 + t\\y = 0\\z =  - 5 + t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 0\\y = 4 - 2t'\\z = 5 + 3t'\end{array} \right..\) Viết phương trình đường thẳng vuông góc chung \(\Delta \) của \({d_1}\) và \({d_2}.\)

A.\(\Delta :\dfrac{x}{2} = \dfrac{{y - 4}}{{ - 3}} = \dfrac{{z - 5}}{{ - 2}}.\)

B.\(\Delta :\dfrac{{x - 4}}{2} = \dfrac{y}{{ - 3}} = \dfrac{{z - 2}}{2}.\)

C.\(\Delta :\dfrac{{x - 1}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z + 5}}{2}.\)

D.\(\Delta :\dfrac{{x - 4}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z + 2}}{2}.\)

Câu 17: Trong không gian với hệ tọa độ Oxyz, cho điểm A(-3;5;-5), B(5;-3;7) và mặt phẳng (P): x + y + z = 0. Tìm tọa độ của điểm M trên mặt phẳng (P) sao cho \(M{A^2} - 2M{B^2}\) đạt giá trị lớn nhất.

A. M(-2;1;1).                   B. M(2;-1;1).

C. M(6;-18;12).               D. M(-6;18;12).

Câu 18: Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(3;0;0), N(2;2;2). Mặt phẳng (P) thay đổi qua M, N cắt các trục Oy, Oz lần lượt tại B(0;b;0), C(0;0;c), \((b \ne 0,c \ne 0).\) Hệ thức nào dưới đây là đúng?

A. b + c = 6.                    B. bc = 3(b+c).

C. bc = b + c.                  D.\(\dfrac{1}{b} + \dfrac{1}{c} = \dfrac{1}{6}.\)

Câu 19: Cho \(I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\dfrac{{{{\cot }^3}x}}{{{{\sin }^2}x}}dx} \) và u = cotx. Mệnh đề nào dưới đây là đúng?

A.\(I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {{u^3}du.} \)           B.\(I = \int\limits_0^1 {{u^3}du.} \)

C.\(I =  - \int\limits_0^1 {{u^3}du.} \)                 D.\(I = \int\limits_0^1 {udu.} \)

Câu 20: Giả sử hàm số y = f(x) có đạo hàm liên tục trên \(\left[ {0;2} \right]\) biết \(\int\limits_0^2 {f(x)dx = 8.} \) Tính \(\int\limits_0^2 {\left[ {f(2 - x) + 1} \right]} dx.\)

A. – 9.                             B. 9.

C. 10.                              D. – 6.

Câu 21: Tìm các số thực x, y thỏa mãn (1 – 3i)x – 2y + (1 + 2y)i = 3 – 6i.

A. x = - 5, y = - 4.           B. x = 5, y = 4.

C. x = 5, y = - 4.              D. x = - 5, y = 4.

Câu 22: Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + bz + c = 0,(c \ne 0).\) Tính \(P = \dfrac{1}{{z_1^2}} + \dfrac{1}{{z_2^2}}\) theo b,c.

A.\(P = \dfrac{{{b^2} - 2c}}{c}.\)                       

B.\(P = \dfrac{{{b^2} + 2c}}{{{c^2}}}.\)

C.\(P = \dfrac{{{b^2} + 2c}}{c}.\)                      

D.\(P = \dfrac{{{b^2} - 2c}}{{{c^2}}}.\)

Câu 23: Tìm các giá trị thực của tham số m để số phức \(z = {m^3} + 3{m^2} - 4 + (m - 1)i\) là số thuần ảo.

A.\(\left[ \begin{array}{l}m = 1\\m =  - 2\end{array} \right..\)                  B. m = 1.

C. m = -2.                        D. m = 0.

Câu 24: Trong mặt phẳng tọa độ, tập hợp điểm M(x;y) biểu diễn số phức z = x + yi \((x,y \in \mathbb{R})\) thỏa mãn \(\left| {z - 1 + 3i} \right| = \left| {z - 2 - i} \right|\) là:

A. Đường tròn đường kính AB với A(1;-3), B(2;1).

B. Đường thẳng trung trực của đoạn thẳng AB với A(1;-3), B(2;1).

C. Trung điểm của đoạn thẳng AB với A(1;-3), B(2;1).

D. Đường thẳng trung trực của đoạn thẳng AB với A(-1;3), B(-2;-1).

Câu 25: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \((S)\): \({(x + 3)^2} + {y^2} + {(z - 2)^2} = {m^2} + 4.\) Tìm tất cả các giá trị thực của tham số m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz).

A. m = 0.         B. m = 2, m = -2.

C.\(m = \sqrt {5.} \)         D.\(m = \sqrt 5 ,m =  - \sqrt 5 .\)

Câu 26: Cho \(\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}} 2xdx = \dfrac{\pi }{a} + \dfrac{b}{c},\) với a, b, c là số nguyên dương \(\dfrac{b}{c}\) tối giản. Tính P = a + b + c.

A. P = 15.                        B. P = 23.

C. P = 24.                        D. P = 25.

Câu 27: Cho \(\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {2x + a} }}} ,\) với a > 0. Tìm a nguyên đề \(I \ge 1.\)

A. a = 1.

B. a = 0.

C. Vô số giá trị của a.

D. Không có giá trị nào của a.

Câu 28: Trong không gian với hệ tọa độ Oxyz, tìm tọa độ điểm \(A'\) đối xứng với A(-1;0;3) qua mặt phẳng (P): x + 3y – 2z – 7 = 0.

A.\(A'\) (-1;-6;1).             B.\(A'\)(0;3;1).

C.\(A'\)(1;6;-1).               D.\(A'\)(11;0;-5).

Câu 29: Tìm nguyên hàm của hàm số \(f(x) = {3^x}.\)

A.\(\int {f(x)dx = \dfrac{{{3^x}}}{{\ln 3}}}  + C.\)

B.\(\int {f(x)dx = \dfrac{{{3^{x + 1}}}}{{x + 1}}}  + C.\)

C.\(\int {f(x)dx = {3^x}}  + C.\)

D.\(\int {f(x)dx = {3^x}} .3\ln 3 + C.\)

Câu 30: Số phức z = 4 – 3i có điểm biểu diễn là:

A. M(4;3).                       B. M(3;4).

C. M(4;-3).                      D. M(-3;4).

Câu 31: Tính \(I = \int\limits_{ - 1}^1 {\dfrac{{{x^3}}}{{{x^2} + 2}}} dx.\)

A. I = 1.                           B. I = 0.

C. I = 3.                           D. I = -3.

Câu 32: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\dfrac{{x - 3}}{2} = \dfrac{{y - 2}}{1} = \dfrac{z}{1}\) và mặt phẳng \((\alpha ):3x + 4y + 5z + 8 = 0.\) Góc giữa đường thẳng \(\Delta \) và mặt phẳng \((\alpha )\) có số đo là:

A.\({45^ \circ }.\)            B.\({90^ \circ }.\)

C.\({30^ \circ }.\)            D.\({60^ \circ }.\)

Câu 33: Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của mặt cầu?

A.\({x^2} + {y^2} + {z^2} + 2x - 4y + 10 = 0.\)

B.\({x^2} + {y^2} + {z^2} + 2x - 2y - 2z - 2 = 0.\)

C.\({x^2} + 2{y^2} + {z^2} + 2x - 2y - 2z - 2 = 0\)

D.\({x^2} - {y^2} + {z^2} + 2x - 2y - 2z - 2 = 0.\)

Câu 34: Trong không gian với hệ tọa độ Oxyz, cho vật thể nằm giữa hai mặt phẳng x = 0 và x = 3. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x(0 \le x \le 3)\) là một hình vuông cạnh là \(\sqrt {9 - {x^2}} .\) Tính thể tích V của vật thể.

A. V = 171.                     B.\(V = 171\pi .\)

C.\(V = 18.\)                    D.\(V = 18\pi .\)

Câu 35: Tìm số phức z thỏa mãn \(z + 2\overline z  = 2 - 4i.\)

A.\(z = \dfrac{2}{3} - 4i.\)     

B.\(z =  - \dfrac{2}{3} + 4i.\)

C.\(z = \dfrac{2}{3} + 4i.\)                                  

D.\(z =  - \dfrac{2}{3} - 4i.\)

Câu 36: Biết \(\int {\dfrac{{{{(x - 1)}^{2016}}}}{{(x + 2)^{{2018}}{{}}}}} dx = \dfrac{1}{a}{\left( {\dfrac{{x - 1}}{{x + 2}}} \right)^b} + C,\)\(\;x \ne 2,\) với a, b nguyên dương. Mệnh đề nào dưới đây đúng?

A. a < b.                          B. a = b.

C. a = 3b.                        D. b – a = 4034.

Câu 37: Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow u  = 2\overrightarrow i  - 3\overrightarrow j  - \overrightarrow k ,\) tọa độ của \(\overrightarrow u \) là:

A.\(\overrightarrow u  = (2;3; - 1).\)                  

B.\(\overrightarrow u  = (2; - 1; - 3).\)

C.\(\overrightarrow u  = (2;3;1).\)                     

D.\(\overrightarrow u  = (2; - 3; - 1).\)

Câu 38: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y = 1 - t\\z =  - 1 + 2t\end{array} \right.\)và mặt phẳng \((\alpha ):x + 3y + z - 2 = 0.\) Khẳng định nào dưới đây là đúng?

A. Đường thẳng d cắt mặt phẳng \((\alpha ).\)   

B. Đường thẳng d nằm trên mặt phẳng \((\alpha ).\)

C. Đường thẳng d vuông góc với mặt phẳng \((\alpha ).\)

D. Đường thẳng d song song với mặt phẳng\((\alpha ).\)

Câu 39: Cho hàm số \(F(x) = ({x^2}{\rm{ + ax + b)}}{{\rm{e}}^x},\) \(f(x) = ({x^2} + 3x + 4){e^x}.\) Biết a, b là các số thực đề F(x) là một nguyên hàm của hàm f(x). Tính S = a + b.

A. S = - 6.                        B. S = 12.

C. S = 6.                          D. S = 4.

Câu 40: Cho hàm số f(x) xác đinh trên \((e; + \infty )\) thỏa mãn \(f'(x) = \dfrac{1}{{x.\ln x}}\) và \(f({e^2}) = 0.\) Tính \(f({e^4}).\)

A.\(f({e^4}) = ln2.\)        B.\(f({e^4}) =  - ln2.\)

C.\(f({e^4}) = 3ln2.\)      D.\(f({e^4}) = 2.\)

Câu 41: Cho hình phẳng (H) (phần gạch chéo trong hình vẽ). Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục hoành.

 

A.\(V = 8\pi .\)                B.\(V = 10\pi .\)

C.\(V = \dfrac{{8\pi }}{3}.\)              D.\(V = \dfrac{{16\pi }}{3}.\)

Câu 42: Cho đồ thị hàm số y = f(x). Diện tích S của hình phẳng (phần tô đen trong hình vẽ) được tính theo công thức nà dưới đây?

 

A.\(S = \int\limits_{ - 3}^0 {f(x)dx}  - \int\limits_0^4 {f(x)dx} .\)              

B.\(S = \int\limits_{ - 3}^4 {f(x)dx} .\)

C.\(S =  - \int\limits_{ - 3}^0 {f(x)dx}  + \int\limits_0^4 {f(x)dx} .\)

D.\(S = \int\limits_{ - 3}^1 {f(x)dx}  + \int\limits_1^4 {f(x)dx} .\)

Câu 43: Tìm số thực m > 1 thỏa mãn \(\int\limits_1^m {x(2\ln x + 1)dx = 2{m^2}} .\)

A. m = e.                         B.m = 2.

C. m = 0.                         D.\(m = {e^2}.\)

Câu 44: Tập hợp các điểm biểu diễn của số phức z trên mặt phẳng tạo độ là đường tròn tâm I(0;1), bán kính R = 3. Mệnh đề nào dưới đây là đúng?

A.\(\left| {z - 1} \right| = 3.\)                                

B.\(\left| {z - i} \right| = 3.\)

C.\(\left| {z - i} \right| = \sqrt 3 .\)                       

D.\(\left| {z + i} \right| = 3.\)

Câu 45: Phương trình nào dưới đây nhận hai số phức \( - \sqrt 3 i\) và \(\sqrt 3 i\) là nghiệm ?

A.\({z^2} + 5 = 0.\)         B. \({z^2} + 3 = 0.\)

C.\({z^2} + 9 = 0.\)         D.\({z^2} + \sqrt 3  = 0.\)

Câu 46: Cho hai số phức \({z_1},{z_2}\) thỏa mãn \(\left| {{z_1} - 1 + i} \right| = 1\) và \({z_2} = 2i{z_1}.\) Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = \left| {2{z_1} - {z_2}} \right|.\)

A.\({P_{\min }} = 2 - \sqrt 2 .\)                           

B.\({P_{\min }} = 8 - \sqrt 2 .\)

C.\({P_{\min }} = 2 - 2\sqrt 2 .\)                         

D.\({P_{\min }} = 4 - 2\sqrt 2 .\)

Câu 47: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;2;1), M(3;0;0) và mặt phẳng (P): x + y + z – 3 = 0. Đường thẳng \(\Delta \) đi qua điểm M, nằm trong mặt phẳng (P) so cho khoảng cách từ điểm A đến đường thẳng \(\Delta \) là nhỏ nhất. Gọi vectơ \(\overrightarrow u  = (a;b;c)\) là một vectơ chỉ phương của \(\Delta \) (a, b, c là các số nguyên có ước chung lớn nhất là 1). Tính P = a + b + c.

A. – 1.                             B. 1.

C. 2.                                D. 0.

Câu 48: Cho hai số phức \({z_1},{z_2}\) thỏa mãn \(\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = 2.\) Gọi M, N lần lượt là các điểm biểu diễn của số phức \({z_1}\) và \({z_2}\). Biết góc tạo bởi hai vectơ \(\overrightarrow {OM} ,\overrightarrow {ON} \) bằng \({45^ \circ }.\) Tính giá trị của biểu thức \(P = \left| {\dfrac{{{z_1} + {z_2}}}{{{z_1} - {z_2}}}} \right|.\)

A.\(P = \sqrt 5 .\)            B.\(P = \dfrac{1}{{\sqrt 5 }}.\)

C.\(P = \dfrac{{2 + \sqrt 2 }}{{2 - \sqrt 2 }}.\)     D.\(P = \dfrac{{\sqrt 2  + 2}}{{\sqrt 2  - 2}}.\)

Câu 49: Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(1;0;2), N(1;-1;-1) và mặt phẳng (P): 2x + 2y – z + 2 = 0. Một mặt cầu đi qua M, N tiếp xúc với mặt phẳng (P) tại điểm E. Biết E luôn thuộc một đường tròn cố định, tính bán kính của đường tròn đó.

A.\(R = \dfrac{{\sqrt {10} }}{2}.\)                       B.\(R = \sqrt {10.} \)

C.\(R = 10.\)                    D.\(R = 2\sqrt 5 .\)

Câu 50: Cho hàm số f(x) có đạo hàm liên tục \(\mathbb{R}\) và thỏa mãn f(x) > 0, \(\forall x \in \mathbb{R}.\) Biết f(0) = 1 và \(f'(x) = (6x - 3{x^2}).f(x).\) Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.

A.\(\left[ \begin{array}{l}m > {e^4}\\0 < m < 1\end{array} \right..\)        B.\(1 < m < {e^4}.\)

C.\(\left[ \begin{array}{l}m > {e^4}\\m < 1\end{array} \right..\)              D.\(1 \le m \le {e^4}.\)

Lời giải chi tiết

1

2

3

4

5

A

A

C

B

A

6

7

8

9

10

B

B

B

D

A

11

12

13

14

15

D

B

D

D

D

16

17

18

19

20

D

C

D

B

C

21

22

23

24

25

B

D

A

B

D

26

27

28

29

30

D

D

C

A

C

31

32

33

34

35

B

D

B

C

C

36

37

38

39

40

C

D

B

D

A

41

42

43

44

45

D

A

D

B

B

46

47

48

49

50

D

D

A

D

A

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.