Đề số 44 - Đề thi thử THPT Quốc gia môn Toán


Đề bài

Câu 1: Hàm số nào dưới đây đồng biến trên khoảng \(\left( { - \,\infty ; + \,\infty } \right)\,\,?\)

A. \(y = \dfrac{{ - \,3x - 1}}{{x - 2}}.\)

B. \(y = \dfrac{{2x + 1}}{{x + 3}}.\)

C. \(y =  - \,2{x^3} - 5x.\)

D. \(y = {x^3} + 2x.\)

Câu 2: Cho khối lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác đều cạnh bằng \(a,\) cạnh bên \(AA' = a,\) góc giữa đường thẳng \(AA'\) và mặt phẳng đáy bằng \({30^0}.\) Tính thể tích khối lăng trụ đã cho theo \(a.\)

A. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}.\)

B. \(\dfrac{{{a^3}\sqrt 3 }}{{12}}.\)

C. \(\dfrac{{{a^3}\sqrt 3 }}{4}.\)

D. \(\dfrac{{{a^3}\sqrt 3 }}{8}.\)

Câu 3: Cho đồ thị hàm số như hình vẽ

Mệnh đề nào dưới đây là đúng ?

A. Hàm số nghịch biến trên \(\left( { - \,\infty ; - \,1} \right).\)

B. Hàm số luôn đồng biến trên \(\mathbb{R}.\)

C. Hàm số đồng biến trên \(\left( { - \,1; + \,\infty } \right).\)

D. Hàm số nghịch biến trên \(\left( {1; + \,\infty } \right).\)

 

Câu 4: Phép tịnh tiến biến gốc tọa độ \(O\) thành điểm \(A\left( {1;2} \right)\) sẽ biến điểm \(A\) thành điểm \(A'\) có tọa độ là :

A. \(A'\left( {4;2} \right).\)

B. \(A'\left( {2;4} \right).\)

C. \(A'\left( { - \,1; - \,2} \right).\)

D. \(A'\left( {3;3} \right).\)

Câu 5: Trong các mệnh đề sau, mệnh đề nào đúng ?

- Nếu \(a \subset \,\,mp\,\left( P \right)\) và \(mp\,\left( P \right)\)//\(mp\,\left( Q \right)\) thì \(a\)//\(mp\,\left( Q \right)\)                         \(\left( {\rm I} \right).\)

- Nếu \(a \subset \,\,mp\,\left( P \right),\,\,b \subset \,\,mp\,\left( Q \right)\) và \(mp\,\left( P \right)\)//\(mp\,\left( Q \right)\) thì \(a\)//\(b\)             \(\left( {{\rm I}{\rm I}} \right).\)

- Nếu \(a\)//\(mp\,\left( P \right),\) \(a\)//\(mp\,\left( Q \right)\) và \(mp\,\left( P \right) \cap mp\,\left( Q \right) = c\) thì \(c\)//\(a\)      \(\left( {{\rm I}{\rm I}{\rm I}} \right).\)

A. Cả \(\left( {\rm I} \right),\,\,\left( {{\rm I}{\rm I}} \right)\) và \(\left( {{\rm I}{\rm I}{\rm I}} \right).\)

B. \(\left( {\rm I} \right)\) và \(\left( {{\rm I}{\rm I}{\rm I}} \right).\)

C. \(\left( {\rm I} \right)\) và \(\left( {{\rm I}{\rm I}} \right).\)

D. Chỉ \(\left( {\rm I} \right).\)

Câu 6: Tìm tập nghiệm \(S\) của phương trình \({\log _3}\left( {{x^2} - 2x + 3} \right) - {\log _3}\left( {x + 1} \right) = 1.\)

A. \(S = \left\{ 0 \right\}.\)

B. \(S = \left\{ {0;\,5} \right\}.\)

C. \(S = \left\{ 5 \right\}.\)

D. \(S = \left\{ {1;\,5} \right\}.\)

Câu 7: Tìm tập xác định \(D\) của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^{ - \,3}}.\)

A. \(D = \mathbb{R}.\)

B. \(D = \mathbb{R}\backslash \left\{ {1;\,2} \right\}.\)

C. \(D = \left( { - \,\infty ;1} \right) \cup \left( {2; + \,\infty } \right).\)

D. \(D = \left( {0; + \,\infty } \right).\)

Câu 8: Cho hàm số \(y = f\left( x \right),\) có bảng biến thiên như sau:

 

Mệnh đề nào dưới đây đúng ?

A. Hàm số đạt cực tiểu tại \(x =  - \,6.\)

B. Hàm số có bốn điểm cực trị.

C. Hàm số đạt cực tiểu tại \(x = 2.\)

D. Hàm số không có cực đại.

Câu 9: Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{2}{{4x - 3}}.\)

A. \(\int {\dfrac{2}{{4x - 3}}\,{\rm{d}}x}  = 2\ln \left( {2x - \dfrac{3}{2}} \right) + C.\)

B. \(\int {\dfrac{2}{{4x - 3}}\,{\rm{d}}x}  = \dfrac{1}{4}\ln \left| {4x - 3} \right| + C.\)     

C. \(\int {\dfrac{2}{{4x - 3}}\,{\rm{d}}x}  = \dfrac{1}{2}\ln \left| {2x - \dfrac{3}{2}} \right| + C.\)

D. \(\int {\dfrac{2}{{4x - 3}}\,{\rm{d}}x}  = \dfrac{1}{2}\ln \left( {2x - \dfrac{3}{2}} \right) + C.\)

Câu 10: Cho hình chóp \(S.ABCD.\) Gọi \(M,\,\,N,\,\,P,\,\,Q\) theo thứ tự là trung điểm của \(SA,\,\,SB,\,\,SC,\,\,SD.\) Tỉ số thể tích của hai khối chóp \(S.MNPQ\) và \(S.ABCD\) bằng

A. \(\dfrac{1}{8}.\)

B. \(\dfrac{1}{2}.\)

C. \(\dfrac{1}{4}.\)

D. \(\dfrac{1}{{16}}.\)

Câu 11: Trong không gian với hệ tọa độ \(Oxyz,\) phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( {1;0; - \,2} \right),\) bán kính \(R = 4\,\,?\)

A. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 16.\)

B. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 4.\)

C. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 16.\)

D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4.\)

Câu 12: Trong các mệnh đề sau, mệnh đề nào đúng ?

Số các cạnh của hình đa diện luôn luôn …

A. lớn hơn hoặc bằng 6.

B. lớn hơn 7.                          

C. lớn hơn 6.

D. lớn hơn hoặc bằng 8.

Câu 13: Cho \(a\) là số thực dương khác \(4.\) Tính \(I = {\log _{\dfrac{a}{4}}}\left( {\dfrac{{{a^3}}}{{64}}} \right).\)

A. \(I = 3.\)

B. \(I = \dfrac{1}{3}.\)

C. \(I =  - \,\dfrac{1}{3}.\)

D. \(I =  - \,3.\)

Câu 14: Tìm số tiệm cận của đồ thị hàm số \(y = \dfrac{{{x^2} - 7x + 6}}{{{x^2} - 1}}.\)

A. 2.

B. 3.

C. 1.

D. 0.

Câu 15: Phương trình \({4^{{x^2}\, - \,2x}} + {2^{{x^2}\, - \,2x\, + \,3}} - 3 = 0.\) Khi đặt \(t = {2^{{x^2}\, - \,2x}},\) ta được phương trình nào dưới đây

A. \({t^2} + 8t - 3 = 0.\)

B. \(4t - 3 = 0.\)

C. \(2{t^2} - 3 = 0.\)

D. \({t^2} + 2t - 3 = 0.\)

Câu 16: Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(A\left( {1; - \,2;3} \right).\) Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm \(M.\) Tọa độ của điểm \(M\) là

A. \(M\left( {1; - \,2;0} \right).\)

B. \(M\left( {0; - \,2;3} \right).\)

C. \(M\left( {1;0;3} \right).\)

D. \(M\left( {1;0;0} \right).\)

Câu 17: Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn \(\left[ { - \,4;4} \right].\) Giá trị của \(M\) và \(m\) lần lượt là

A. \(M = 40;\,\,m = 8.\)

B. \(M = 40;\,\,m =  - \,41.\)   

C. \(M = 15;\,\,m =  - \,41.\)

D. \(M = 40;\,\,m =  - \,8.\)

Câu 18: Rút gọn biểu thức \(A = \dfrac{{\sqrt[3]{{{a^7}}}.{a^{\dfrac{{11}}{3}}}}}{{{a^4}\sqrt[7]{{{a^{ - \,5}}}}}}\) với \(a > 0,\) ta được kết quả \(A = {a^{\dfrac{m}{n}}},\) trong đó \(m,\,\,n \in {\mathbb{N}^ * }\) và \(\dfrac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây là đúng ?

A. \({m^2} - {n^2} = 312.\)

B. \({m^2} - {n^2} =  - \,312.\)

C. \({m^2} + {n^2} = 543.\)

D. \({m^2} + {n^2} = 409.\)

Câu 19: Trong không gian với hệ tọa độ \(Oxyz,\) cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {1;0;1} \right),\,\,B\left( {2;1;2} \right)\)

\(D\left( {1; - \,1;1} \right)\) và \(C'\left( {4;5; - \,5} \right).\) Tính tọa độ đỉnh \(A'\) của hình hộp.

A. \(A'\left( {4;6; - 5} \right).\)

B. \(A'\left( {3;4; - \,6} \right).\)

C. \(A'\left( {3;5; - \,6} \right).\)

D. \(A'\left( {2;0;2} \right).\)

Câu 20: Cho \(F\left( x \right) = \left( {a{x^2} + bx - c} \right){e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2018{x^2} - 3x + 1} \right){e^{2x}}\) trên khoảng \(\left( { - \,\infty ; + \,\infty } \right).\) Tính tổng \(T = a + 2b + 4c.\)

A. \(T = 1007.\)

B. \(T = 1011.\)

C. \(T =  - \,3035.\)

D. \(T =  - \,5053.\)

Câu 21: Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec u,\,\,\vec v\) tạo với nhau một góc \({120^0}\) và \(\left| {\vec u} \right| = 2;\)\(\left| {\vec v} \right| = 5.\) Tính giá trị biểu thức \(\left| {\vec u + \vec v} \right|.\)

A. \(\sqrt {19} .\)

B. \(\sqrt {39} .\)

C. \(7.\)

D. \( - \,5.\)

Câu 22: Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên trục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ:

Số điểm cực trị của hàm số \(y = f\left( x \right) - 5x\) là

A. 4.

B. 3.

C. 1.

D. 2.

 

Câu 23: Biết hệ số của \({x^2}\) trong khai triển của \({\left( {1 - 3x} \right)^n}\) là \(90.\) Tìm \(n\,\,?\)

A. \(n = 6.\)

B. \(n = 8.\)

C. \(n = 7.\)

D. \(n = 5.\)

Câu 24: Bình có bốn đôi giày khác nhau gồm bốn màu: đen, trắng, xanh và đỏ. Một buổi sáng đi học, vì vội vàng, Bình đã lấy ngẫu nhiên hai chiếc giày từ bốn đôi giày đó. Tính xác suất để Bình lấy được hai chiếc giày cùng màu.  

A. \(\dfrac{1}{7}.\)

B. \(\dfrac{1}{4}.\)

C. \(\dfrac{1}{{14}}.\)

D. \(\dfrac{2}{7}.\)

Câu 25: Cho phương trình lượng giác \(2m\sin x\cos x + 4{\cos ^2}x = m + 5,\) với \(m\) là một phần tử của tập hợp \(E = \left\{ { - \,3; - \,2; - \,1;0;1;2} \right\}.\) Có bao nhiêu giá trị của \(m\) để phương trình đã cho có nghiệm ?

A. 3.

B. 4.

C. 6.

D. 2.

Câu 26: Sinh nhật bạn của An vào ngày 01 tháng năm. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo 100 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 100 đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền ? (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 04 năm 2016)

A. 726.000 đồng.

B. 750.300 đồng.

C. 714.000 đồng.

D. 738.100 đồng.

Câu 27: Nếu \({\log _2}\left( {{{\log }_8}x} \right) = {\log _8}\left( {{{\log }_2}x} \right)\) thì \({\left( {{{\log }_2}x} \right)^2}\) bằng

A. \(3\sqrt 3 .\)

B. \(3.\)

C. \({3^{ - \,1}}.\)

D. \(27.\)

Câu 28: Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y = \left( {3m + 1} \right)x + 3 + m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y = {x^3} - 3{x^2} - 1.\)

A. \(m = \dfrac{1}{6}.\)

B. \(m =  - \dfrac{1}{6}.\)

C. \(m = \dfrac{1}{3}.\)

D. \(m =  - \dfrac{1}{3}.\)

Câu 29: Khi quay một tam giác đều cạnh bằng \(a\) (bao gồm cả điểm trong tam giác) quanh một cạnh của nó ta được một khối tròn xoay. Tính thể tích \(V\) của khối tròn xoay đó theo \(a.\)

A. \(\dfrac{{\pi {a^3}}}{4}.\)

B. \(\dfrac{{3\pi {a^3}}}{4}.\)

C. \(\dfrac{{\pi \sqrt 3 \,{a^3}}}{{24}}.\)

D. \(\dfrac{{\pi \sqrt 3 \,{a^3}}}{8}.\)

Câu 30: Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{2{e^x} + 3}}\) thỏa mãn \(F\left( 0 \right) = 10.\) Tìm \(F\left( x \right).\)

A. \(F\left( x \right) = \dfrac{1}{3}\left( {x - \ln \left( {{e^x} + \dfrac{3}{2}} \right)} \right) + 10 + \ln 5 - \ln 2.\)

B. \(F\left( x \right) = \dfrac{1}{3}\left( {x + 10 - \ln \left( {2{e^x} + 3} \right)} \right).\) 

C. \(F\left( x \right) = \dfrac{1}{3}\left( {x - \ln \left( {{e^x} + \dfrac{3}{2}} \right)} \right) + 10 - \dfrac{{\ln 5 - \ln 2}}{3}.\)

D. \(F\left( x \right) = \dfrac{1}{3}\left( {x - \ln \left( {2{e^x} + 3} \right)} \right) + 10 + \dfrac{{\ln 5}}{3}.\)

Câu 31: Cho \(x = 2018!.\) Tính \(A = \dfrac{1}{{{{\log }_{{2^{2018}}}}x}} + \dfrac{1}{{{{\log }_{{3^{2018}}}}x}} + \,...\, + \dfrac{1}{{{{\log }_{{{2017}^{2018}}}}x}} + \dfrac{1}{{{{\log }_{{{2018}^{2018}}}}x}}.\)

A. \(A = 2018.\)

B. \(A = 2018.\)

C. \(A = \dfrac{1}{{2018}}.\)

D. \(A = 2017.\)

Câu 32: Tìm giá trị thực của tham số \(m\) để phương trình \(\log _5^2x - m{\log _5}x + m + 1 = 0\) có hai nghiệm thực \({x_1},\,\,{x_2}\) thỏa mãn \({x_1}{x_2} = 625.\)

A. Không có giá trị nào của \(m.\)

B. \(m = 4.\)                           

C. \(m = 44.\)

D. \(m =  - \,4.\)

Câu 33: Tìm tập nghiệm \(S\) của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {{{\log }_4}\dfrac{{2x + 1}}{{x - 1}}} \right) > 1\)

A. \(S = \left( { - \,\infty ;1} \right).\)

B. \(S = \left( {1; + \,\infty } \right).\)

C. \(S = \left( { - \,\infty ; - \,2} \right).\)

D. \(S = \left( { - \,\infty ; - \,3} \right).\)

Câu 34: Cho hàm số \(y = \left( {m - 1} \right){x^3} + \left( {m - 1} \right){x^2} - 2x + 5\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \(\left( { - \,\infty ; + \,\infty } \right)\,\,?\)

A. 5.

B. 8.

C. 7.

D. 6.

Câu 35: Cho hình chóp \(S.ABC\) có các cạnh bên \(SA,\,\,SB,\,\,SC\) tạo với đáy các góc bằng nhau và đều bằng \({30^0}.\) Biết \(AB = 5,\,\,AC = 7,\,\,BC = 8.\) Tính khoảng cách \(d\) từ \(A\) đến mặt phẳng \(\left( {SBC} \right).\)

A. \(d = \dfrac{{35\sqrt {13} }}{{52}}.\)

B. \(d = \dfrac{{35\sqrt {13} }}{{26}}.\)

C. \(d = \dfrac{{35\sqrt {39} }}{{52}}.\)

D. \(d = \dfrac{{35\sqrt {13} }}{{13}}.\)

Câu 36: Cho hàm số \(y = \dfrac{1}{3}{x^3} - \dfrac{1}{2}m{x^2} - 4x - 10,\) với \(m\) là tham số, gọi \({x_1},\,\,{x_2}\) là các điểm cực trị của hàm số đã cho. Giá trị lớn nhất của biểu thức \(P = \left( {x_1^2 - 1} \right)\left( {x_2^2 - 1} \right)\) bằng

A. 9.

B. 1.

C. 4.

D. 0.

Câu 37: Để đóng học phí học đại học, bạn An vay ngân hàng số tiền 9.000.000 đồng, lãi suất 3%/năm trong thời hạn 4 năm với thể thức cứ sau mỗi năm, số tiền lãi sẽ được nhập vào nợ gốc để tính lãi cho năm tiếp theo. Sau bốn năm, đến thời hạn trả nợ, hai bên thỏa thuận hình thức trả nợ như sau: lãi suất cho vay được điều chỉnh thành 0,25%/tháng, đồng thời hàng tháng bạn An phải trả nợ cho ngân hàng số tiền T không đổi và cứ sau mỗi tháng, số tiền T sẽ được trừ vào tiền nợ gốc để tính lãi cho tháng tiếp theo. Hỏi muốn trả hết nợ ngân hàng trong 5 năm thì hàng tháng bạn An phải trả cho ngân hàng số tiền T là bao nhiêu ? (T được làm tròn đến hàng đơn vị).

A. 182018 đồng.

B. 182017 đồng.

C. 182016 đồng.

D. 182015 đồng.

Câu 38: Tìm \(L = \lim \left( {\dfrac{1}{1} + \dfrac{1}{{1 + 2}} + \,...\, + \dfrac{1}{{1 + 2 + \,...\, + n}}} \right).\)

A. \(L =  + \,\infty .\)

B. \(L = \dfrac{3}{2}.\)

C. \(L = 2.\)

D. \(L = \dfrac{5}{2}.\)

Câu 39: Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x - {m^3}\) với \(m\) là tham số; gọi \(\left( C \right)\) là đồ thị của hàm số đã cho. Biết rằng, khi \(m\) thay đổi, điểm cực đại của đồ thị \(\left( C \right)\) luôn nằm trên một đường thẳng \(d\) cố định. Xác định hệ số góc \(k\) của đường thẳng \(d.\)

A. \(k =  - \,3.\)

B. \(k = 3.\)

C. \(k =  - \dfrac{1}{3}.\)

D. \(k = \dfrac{1}{3}.\)

Câu 40: Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị \(\left( C \right)\) của hàm số \(y = {x^4} - 2{m^2}{x^2} + {m^4} + 5\) có ba điểm cực trị, đồng thời ba điểm cực trị cùng với gốc tọa độ \(O\) tạo thành một tứ giác nội tiếp. Tìm số phần tử của \(S.\)

A. 0.

B. 1.

C. 2.

D. 3.

Câu 41: Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng điểm số của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?

A. 8.

B. 7.

C. 5.

D. 6.

Câu 42: Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {C'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\, \times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)

 

A. \(\dfrac{{100\pi {a^3}}}{3}.\)

B. \(250\pi {a^3}.\)

C. \(\dfrac{{250\pi {a^3}}}{3}.\)

D. \(100\pi {a^3}.\)

Câu 43: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a\sqrt 3 ,\,\,AD = a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) diện tích \(S\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD.\)

A. \(S = 5\pi {a^2}.\)

B. \(S = 2\pi {a^2}.\)

C. \(S = 10\pi {a^2}.\)

D. \(S = 4\pi {a^2}.\)

Câu 44: Cho hàm số \(y = f\left( x \right) = {2^{2018}}{x^3} + {3.2^{2018}}{x^2} - 2018\) có đồ thị cắt trục hoành tại 3 điểm phân biệt có hoành độ \({x_1},\,\,{x_2},\,\,{x_3}.\) Tính giá trị biểu thức \(P = \dfrac{1}{{f'\left( {{x_1}} \right)}} + \dfrac{1}{{f'\left( {{x_2}} \right)}} + \dfrac{1}{{f'\left( {{x_3}} \right)}}.\)

A. \(P = {3.2^{2018}} - 1.\)

B. \(P = {2^{2018}}.\)

C. \(P =  - \,2018.\)

D. \(P = 0.\)

Câu 45: Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác cân, với \(AB = AC = a\) và góc \(\widehat {BAC} = {120^0},\) cạnh bên \(AA' = a.\) Gọi \(I\) là trung điểm của \(CC'.\) Cosin của góc tạo bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'I} \right)\) bằng

A. \(\dfrac{{\sqrt {11} }}{{11}}.\)

B. \(\dfrac{{\sqrt {33} }}{{11}}.\)

C. \(\dfrac{{\sqrt {30} }}{{10}}.\)

D. \(\dfrac{{\sqrt {10} }}{{10}}.\)

Câu 46: Cho hàm số \(y = \dfrac{{2x}}{{x + 2}},\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right),\) với \({x_0} \ne 0.\) Biết khoảng cách từ điểm \(I\left( { - \,2;2} \right)\) đến tiếp tuyến của \(\left( C \right)\) tại \(M\) là lớn nhất, mệnh đề nào sau đây đúng ?

A. \({x_0} + 2{y_0} =  - \,4.\)

B. \({x_0} + 2{y_0} = 2.\)

C. \({x_0} + 2{y_0} =  - \,2.\)

D. \({x_0} + 2{y_0} = 0.\)

Câu 47: Tính giá trị của biểu thức \(P = {x^2} + {y^2} - xy + 1,\) biết \({4^{{x^2}\, + \,\dfrac{1}{{{x^2}}}\, - \,1}} = {\log _2}\left[ {14 - \left( {y - 2} \right)\sqrt {y + 1} } \right],\) với \(x \ne 0,\) \( - \,1 \le y \le \dfrac{{13}}{2}.\)

A. \(P = 1.\)

B. \(P = 2.\)

C. \(P = 3.\)

D. \(P = 4.\)

Câu 48: Xét các số thực \(x,\,\,y\) với \(x \ge 0\) thỏa mãn điều kiện:

\({2018^{x\, + \,3y}} + {2018^{xy\, + \,1}} + x + 1 = {2018^{ - \,xy\, - \,1}} \)\(\,+ \dfrac{1}{{{{2018}^{x\, + \,3y}}}} - y\left( {x + 3} \right)\)

Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T = x + 2y.\) Mệnh đề nào sau đây đúng ?

A. \(m \in \left( { - \,1;0} \right).\)

B. \(m \in \left( {0;1} \right).\)

C. \(m \in \left( {2;3} \right).\)

D. \(m \in \left( {1;2} \right).\)

Câu 49: Cho \(x,\,\,y\) là các số thực dương. Xét các hình chóp \(S.ABC\) có \(SA = x,\,\,BC = y,\) các cạnh còn lại đều bằng \(1.\) Khi \(x,\,\,y\) thay đổi, thể tích khối chóp \(S.ABC\) có giá trị lớn nhất là

A. \(\dfrac{{\sqrt 2 }}{{12}}.\)

B. \(\dfrac{{2\sqrt 3 }}{{27}}.\)

C. \(\dfrac{{\sqrt 3 }}{8}.\)

D. \(\dfrac{1}{8}.\)

Câu 50: Cho hàm số \(f\left( x \right) = \left( {{m^{2018}} + 1} \right){x^4} \)\(\,+ \left( { - \,2{m^{2018}} - {2^{2018}}{m^2} - 3} \right){x^2} + {m^{2018}} + 2018,\) với \(m\) là tham số. Số cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là

A. 7.

B. 5.

C. 3.

D. 6.

Lời giải chi tiết

1. D

2. D

3. A

4. B

5. C

6. B

7. B

8. C

9. C

10. A

11. C

12. A

13. A

14. A

15. A

16. B

17. B

18. A

19. D

20. D

21. A

22. C

23. D

24. A

25. A

26. D

27. D

28. B

29. A

30. D

31. A

32. A

33. C

34. C

35. C

36. A

37. D

38. C

39. A

40. C

41. C

42. C

43. A

44. D

45. C

46. A

47. B

48. A

49. B

50. A

Xem thêm: Lời giải chi tiết Đề thi thử THPT Quốc gia môn Toán tại Tuyensinh247.com

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.