Bài 48 trang 12 SBT Hình Học 11 Nâng cao


Giải bài 48 trang 12 sách bài tập Hình Học 11 Nâng cao. Chứng minh rằng hai hình thang ấy bằng nhau nếu AB = A’B’, BC = B’C’ và CD = C’D’.

Đề bài

Cho hình thanh ABCD vuông tại A và D, hình thang A'B'C'D' vuông góc tại A' và D'. 

Chứng minh rằng hai hình thang ấy bằng nhau nếu AB = A’B’, BC = BC và CD = CD’.

Lời giải chi tiết

Nếu AB = CD thì kết quả là hiển nhiên.

Giả sử AB < CD, kẻ BH\(\bot\) CD, B'H' \(\bot\) C'D'

Ta có CH = CD – AB = C'D' - A'B' = C'H'.

Từ đó, suy ra hai tam giác vuông BHC và B'H'C' bằng nhau.

Gọi F là phép dời hình biến tam giác BHC thành tam giác B'H'C', thì dễ thấy rằng F biến A thành A' và biến D thành D'.

Do đó F biến hình thang ABCD thành hình thang A'B'C'D'.

Vậy hai hình thang đó bằng nhau.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 5: Hai hình bằng nhau

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài