Câu 4.41 trang 140 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng

Đề bài

Giả sử f và g là hai hàm,f số xác định trên khoảng (a ; b) có thể trừ điểm \({x_0} \in \left( {a;b} \right).\) Chứng minh rằng nếu

           \(\left| {f\left( x \right)} \right| \le \left| {g\left( x \right)} \right|\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\},\) và \(\mathop {\lim }\limits_{x \to 0} g\left( x \right) = 0\)

Thì

                             \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 0\)

Lời giải chi tiết

Hãy chứng minh rằng, với mọi dãy số \(({x_n})\) trong \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) sao cho \(\lim {x_n} = {x_0},\) ta có \(\lim f\left( {{x_n}} \right) = 0.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài