Bài 3 trang 25 SGK Hình học 12


Giải bài 3 trang 25 SGK Hình học 12. Cho hình hộp ABCD.A’B’C’D’. Tính thể tích của khối hộp đó và thể tích của khối tứ diện ACB’D’.

Đề bài

Cho hình hộp \(ABCD.A’B’C’D’\). Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện \(ACB’D’\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Gọi \(S\) là diện tích đáy \(ABCD\) và \(h\) là chiều cao của khối hộp. Tính thể tích của khối hộp.

+) Chia khối hộp thành khối tứ diện \(ACB’D’\) và bốn khối chóp \(A.A’B’D’, C.C’B’D’, B’.BAC\) và \(D’. DAC\). Tính thể tích của bốn khối chóp \(A.A’B’D’, C.C’B’D’, B’.BAC\) và \(D’. DAC\).

+) Suy ra \({V_{ACB'D'}} = V - \)\(\left( {{V_{A.A'B'D'}} + {V_{C.C'B'D'}} + {V_{B'BAC}} + {V_{D'.DAC}}} \right)\)

+) Tính tỉ số thể tích.

Lời giải chi tiết

Gọi \(S\) là diện tích đáy \(ABCD\) và \(h\) là chiều cao của khối hộp thì thể tích của khối hộp: \( \Rightarrow V = S.h\)

Chia khối hộp thành khối tứ diện \(ACB’D’\) và bốn khối chóp \(A.A’B’D’, C.C’B’D’, B’.BAC\) và \(D’. DAC\).

Xét khối chóp \(A.A'B'D'\) có diện tích đáy \({S_{A'B'D'}} = \dfrac{S}{2}\) và chiều cao bằng \(h\). Do đó \({V_{A.A'B'D'}} = \dfrac{1}{3}.\dfrac{S}{2}.h = \dfrac{{S.h}}{6}\).

Tương tự như vậy ta chứng minh được:

\({V_{A.A'B'D'}} = {V_{C.C'B'D'}} = {V_{B'BAC}} = {V_{D'.DAC}} \)\(= \dfrac{{S.h}}{6}\)

Vậy \({V_{ACB'D'}} = V - \)\(\left( {{V_{A.A'B'D'}} + {V_{C.C'B'D'}} + {V_{B'BAC}} + {V_{D'.DAC}}} \right)\)

\(= S.h - 4.\dfrac{{S.h}}{6} = \dfrac{{S.h}}{3}\).

\( \Rightarrow \dfrac{V}{{{V_{ACB'D'}}}} = \dfrac{{S.h}}{{\dfrac{1}{3}S.h}} = 3\)

Loigiaihay.com


Bình chọn:
3.8 trên 16 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài