Bài 2 trang 25 SGK Hình học 12


Giải bài 2 trang 25 SGK Hình học 12. Tính thể tích khối bát diện đều cạnh a.

Đề bài

Tính thể tích khối bát diện đều cạnh \(a\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Chia khối bát diện đều thành hai khối chóp tứ giác đều.

+) Xác định chiều cao và áp dụng công thức tính thể tích khối chóp: \(V = \dfrac{1}{3}h.{S_d}\)

Lời giải chi tiết

Chia khối tám mặt đều cạnh \(a\) thành hai khối chóp tứ giác đều cạnh \(a\) là \(E.ABCD\) và \(F.ABCD\).

Xét chóp tứ giác đều \(E.ABCD\). Gọi \(H\) là tâm hình vuông \(ABCD\) ta có: \(EH \bot \left( {ABCD} \right)\).

Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(AC = \sqrt {A{B^2} + B{C^2}}  \) \(= \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\(  \Rightarrow AH = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\).

Áp dụng định lí Pitago trong tam giác vuông \(EHA\) có: \(E{H^2} = E{A^2} - A{H^2} \) \(= {a^2} - {\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2} \)\( = \dfrac{{{a^2}}}{2}\)

\(\Rightarrow EH = \dfrac{{a\sqrt 2 }}{2}\)

\( \Rightarrow {V_{E.ABCD}} = \dfrac{1}{3}EH.{S_{ABCD}} \) \(= \dfrac{1}{3}.\dfrac{{a\sqrt 2 }}{2}.{a^2} = \dfrac{{{a^3}\sqrt 2 }}{6}\)

Vậy thể tích khối tám mặt đều cạnh \(a\) là: \(V = 2.{V_{E.ABCD}}= \displaystyle {{{a^3} \sqrt 2 } \over 3}\).

Chú ý: Hình chóp đa giác đều có hình chiếu của đỉnh trên mặt đáy trùng với tâm mặt đáy.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 16 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài