Bài 2 trang 7 Vở bài tập toán 9 tập 2


Giải Bài 2 trang 7, 8 VBT toán 9 tập 2. Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:

LG a

3x – y =2 

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(3x - y = 2 \Leftrightarrow y = 3x - 2\)

Vậy nghiệm tổng quát của phương trình là \(\left( {x;3x - 2} \right)\) với \(x \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( {0; - 2} \right)\) và \(B\left( {2;4} \right)\).

Vẽ hình 2:  

LG b

x + 5y = 3

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(x + 5y = 3 \Leftrightarrow x = 3 - 5y\)

Vậy nghiệm tổng quát của phương trình là \(\left( {3 - 5y;y} \right)\) với \(y \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( {3;0} \right)\) và \(B\left( { - 2;1} \right)\).

Vẽ hình 3:

LG c

4x – 3y = -1  

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(4x - 3y =  - 1 \Leftrightarrow y = \dfrac{4}{3}x + \dfrac{1}{3}\) 

Vậy nghiệm tổng quát của phương trình là \(\left( {x;\dfrac{4}{3}x + \dfrac{1}{3}} \right)\) với \(x \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( { - 1; - 1} \right)\) và \(B\left( {2;3} \right)\).

Vẽ hình 4:

LG d

0x + 2y = 5

Phương pháp giải:

Tập nghiệm của phương trình \({\rm{ax}} + by = c\) biểu diễn bởi đường thẳng \(d:{\rm{ }}ax + by = c.\)

+) Nếu a≠0 và b=0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục tung. 

+) Nếu a=0 và b≠0 thì phương trình có nghiệm  \(\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.\) và đường thẳng d song song hoặc trùng với trục hoành.

+) Nếu a≠0 và b≠0 thì phương trình có nghiệm \(\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.\) và đường thẳng d là đồ thị hàm số \(y =  - \dfrac{a}{b}x + \dfrac{c}{b}\)

Lời giải chi tiết:

Ta có \(0x + 2y = 5 \Leftrightarrow y = \dfrac{5}{2}\) 

Vậy nghiệm tổng quát của phương trình là \(\left( {x;\dfrac{5}{2}} \right)\) với \(x \in \mathbb{R}\) .

Đường thẳng biểu diễn tập nghiệm của nó đi qua hai điểm \(A\left( {0;\dfrac{5}{2}} \right)\) và \(B\left( {1;\dfrac{5}{2}} \right)\).

Vẽ hình 5:

Loigiaihay.com


Bình chọn:
4.4 trên 5 phiếu

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí