Lý thuyết phương trình bậc hai với hệ số thực


Các căn bậc hai của số thực a < 0

- Các căn bậc hai của số thực \(a < 0\) là \(± i\sqrt{|a|}\)

- Xét phương trình bậc hai \(a{x^2} + bx + c= 0\) với \(a, b, c \in R\), \(a \ne 0\).

Đặt  \(\Delta  = {b^2}-4ac\).

- Nếu \(∆ = 0\) thì phương trình có một nghiệm kép (thực) \(x =  -\dfrac{b}{2a}\).

- Nếu \(∆ > 0\) thì phương trình có hai nghiệm thực \(x_{1,2}\)= \( \dfrac{-b \pm \sqrt{\bigtriangleup }}{2a}\)

- Nếu \(∆ < 0\) thì phương trình có hai nghiệm phức \(x_{1,2}\) = \( \dfrac{-b \pm i\sqrt{|\bigtriangleup | }}{2a}\)

Nhận xét. Trên \(\mathbb C\), mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt). Tổng quát, mọi phương trình bậc \(n\), \(n \in {\mathbb N }^*\) đều có \(n\) nghiệm phức (các nghiệm không nhất thiết phải phân biệt).

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài