Bài 45 trang 38 Vở bài tập toán 8 tập 1>
Giải bài 45 trang 38 VBT toán 8 tập 1. Rút gọn các biểu thức sau: a) (x+2)(x-2) - (x-3)(x+1) ...
Rút gọn các biểu thức sau:
LG a
\(\left( {x + 2} \right)\left( {x - 2} \right) - \left( {x - 3} \right)\left( {x + 1} \right);\)
Phương pháp giải:
- Áp dụng quy tắc: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
- Áp dụng hằng đẳng thức:
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
\({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)
Lời giải chi tiết:
\(\left( {x + 2} \right)\left( {x - 2} \right) - \left( {x - 3} \right)\left( {x + 1} \right) \)
\(={x^2} - 4 - ({x^2} + x - 3x - 3)\)
\(={x^2} - 4 - {x^2} - x + 3x + 3\)
\(=2x-1\)
LG b
\({\left( {2x + 1} \right)^2} + {\left( {3x - 1} \right)^2} + 2\left( {2x + 1} \right)\left( {3x - 1} \right).\)
Phương pháp giải:
- Áp dụng quy tắc: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
- Áp dụng hằng đẳng thức:
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
\({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)
Lời giải chi tiết:
\({\left( {2x + 1} \right)^2} + {\left( {3x - 1} \right)^2} \)\(+ 2\left( {2x + 1} \right)\left( {3x - 1} \right)\)
\(={\left[ {\left( {2x + 1} \right) + \left( {3x - 1} \right)} \right]^2}\)\(={\left( {5x} \right)^2} = 25{x^2}\)
Loigiaihay.com
- Bài 46 trang 38 Vở bài tập toán 8 tập 1
- Bài 47 trang 39 Vở bài tập toán 8 tập 1
- Đề kiểm tra 45 phút chương 1 phần Đại số 8 - Đề số 1
- Đề kiểm tra 45 phút chương 1 phần Đại số 8 - Đề số 2
- Bài 44 trang 38 Vở bài tập toán 8 tập 1
>> Xem thêm