Bài 4.4 trang 199 SBT giải tích 12


Đề bài

Số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình dưới đây?

Phương pháp giải - Xem chi tiết

Quan sát hình vẽ và nhận xét phần thực và phần ảo của số phức \(z\).

Lời giải chi tiết

a) Từ hình vẽ ta thấy số phức thỏa mãn phần thực của \(z\) thuộc đoạn \([-3; -2] \) trên trục \(Ox\); phần ảo của \(z\) thuộc đoạn \([1; 3] \) trên trục \(Oy\).

b) Phần gạch chéo được giới hạn bởi hai đường tròn \({x^2} + {y^2} = 1\) và \({x^2} + {y^2} = 4\) và phần ảo \(y \le  - \dfrac{1}{2}\).

Vậy số phức \(z\) thỏa mãn phần ảo của \(z\) nhỏ hơn hoặc bằng \( - \dfrac{1}{2},\)\(1 \le \left| z \right| \le 2\)


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.