Bài 4.1 trang 198 SBT giải tích 12


Giải bài 4.1 trang 198 sách bài tập giải tích 12. Tìm các số thực x, y thỏa mãn:...

Đề bài

Tìm các số thực \(x, y\) thỏa màn:

a) \(2x + 1 + (1 – 2y)i\) \( = 2 – x + (3y – 2)i\)

b) \(4x + 3 + (3y – 2)i \) \( = y  +1 + (x – 3)i\)

c) \(x + 2y + (2x – y)i \) \( = 2x + y + (x  + 2y)i\)

Phương pháp giải - Xem chi tiết

Số phức \(a = x + yi\) và \(b = x' + y'i\) bằng nhau nếu \(\left\{ \begin{array}{l}x = x'\\y = y'\end{array} \right.\).

Lời giải chi tiết

a) Ta có: \(\left( {2x + 1} \right) + \left( {1 - 2y} \right)i\) \( = \left( {2 - x} \right) + \left( {3y - 2} \right)i\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x + 1 = 2 - x\\1 - 2y = 3y - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3x = 1\\5y = 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{3}\\y = \dfrac{3}{5}\end{array} \right.\)

Vậy \(x = \dfrac{1}{3},y = \dfrac{3}{5}\)

b) \(4x + 3 + \left( {3y - 2} \right)i\) \( = {\rm{ }}y\; + 1 + \left( {x - 3} \right)i\)

\( \Leftrightarrow \left\{ \begin{array}{l}4x + 3 = y + 1\\3y - 2 = x - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}4x - y =  - 2\\x - 3y = 1\end{array} \right.\) \( \Leftrightarrow \left\{ {} \right.\)

Vậy \(x =  - \dfrac{7}{{11}},y =  - \dfrac{6}{{11}}\).

c) \(x + 2y + \left( {2x - y} \right)i\) \( = 2x + y + \left( {x + 2y} \right)\)

\( \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 2x + y\\2x - y = x + 2y\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x - y = 0\\x - 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\end{array} \right.\)

Vậy \(x = y = 0\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài