Bài 3.75 trang 136 SBT hình học 12


Giải bài 3.75 trang 136 sách bài tập hình học 12. Cho đường thẳng...

Đề bài

Cho đường thẳng \(d\) có phương trình tham số: \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3t\\z =  - 3 + 5t\end{array} \right.\). Phương trình chính tắc của \(d\) là:

A. \(\dfrac{{x - 2}}{2} = \dfrac{y}{{ - 3}} = \dfrac{{z + 3}}{5}\)

B. \(\dfrac{{x + 2}}{2} = \dfrac{y}{{ - 3}} = \dfrac{{z - 3}}{5}\)

C. \(x - 2 = y = z + 3\)

D. \(x + 2 = y = z - 3\)

Phương pháp giải - Xem chi tiết

- Tìm điểm đi qua và VTCP.

- Phương trình chính tắc của đường thẳng: \(\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\)

Lời giải chi tiết

Đường thẳng \(d\) đi qua \(A\left( {2;0; - 3} \right)\) và nhận \(\overrightarrow u  = \left( {2; - 3;5} \right)\) làm VTCP.

Do đó phương trình chính tắc \(\dfrac{{x - 2}}{2} = \dfrac{y}{{ - 3}} = \dfrac{{z + 3}}{5}\).

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài