Bài 3.69 trang 135 SBT hình học 12


Đề bài

Gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua điểm \(A\left( {1;2;3} \right)\) và song song với mặt phẳng \(\left( \beta  \right)\): \(x - 4y + z + 12 = 0\). Phương trình tổng quát của \(\left( \alpha  \right)\) là:

A. \(x - 4y + z + 4 = 0\)

B. \(x - 4y + z - 4 = 0\)

C. \(x - 4y + z - 12 = 0\)

D. \(x - 4y + z + 3 = 0\)

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết: \(\left( \alpha  \right)//\left( \beta  \right) \Rightarrow \overrightarrow {{n_\alpha }}  = k\overrightarrow {{n_\beta }} \)

Lời giải chi tiết

Mặt phẳng \(\left( \alpha  \right)\) song song \(\left( \beta  \right)\) nên \(\overrightarrow {{n_\alpha }}  = \overrightarrow {{n_{ \beta  }}}  = \left( {1; - 4;1} \right)\)

Vậy \(\left( \alpha  \right):\) \(1\left( {x - 1} \right) - 4\left( {y - 2} \right) + 1\left( {z - 3} \right) = 0\) \( \Leftrightarrow x - 4y + z + 4 = 0\)

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.