Bài 2.7 trang 47 SBT hình học 12


Giải bài 2.7 trang 47 sách bài tạp hình học 12. Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A.

Đề bài

Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng  (P) sao cho góc \(\widehat {ABM} = \widehat {BMH}\) . Chứng minh rằng  điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB.

Phương pháp giải - Xem chi tiết

Gọi I là hình chiếu của M lên AB. Chứng minh MI=BH không đổi và suy ra khối trụ cần tìm.

Lời giải chi tiết

Giả sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho.

Gọi I là hình chiếu vuông góc của M trên AB.

Xét tam giác vuông BIM và MHB có:

\(BM\) chung.

\(\widehat B = \widehat M\) (giả thiết)

Suy ra \(\Delta BIM = \Delta MHB\left( {c - h - g - n} \right)\)

Do đó  MI = BH không đổi hay M luôn cách AB một khoảng không đổi.

Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài